New tools for the analysis and validation of cryo-EM maps and atomic models

New methods and PHENIX tools for quality assessment of cryo-EM maps, atomic models and model-to-map fitting are presented. Results of systematic application of these tools to high-resolution cryo-EM maps and corresponding atomic models are analyzed and discussed.

[1]  D. Barford,et al.  Atomic structure of the APC/C and its mechanism of protein ubiquitination , 2015, Nature.

[2]  D. Baker,et al.  Refinement of protein structures into low-resolution density maps using rosetta. , 2009, Journal of molecular biology.

[3]  R. Read Improved Fourier Coefficients for Maps Using Phases from Partial Structures with Errors , 1986 .

[4]  Michael Schatz,et al.  Single-particle cryo-EM using alignment by classification (ABC): the structure of Lumbricus terrestris haemoglobin , 2017, IUCrJ.

[5]  Paul D. Adams,et al.  Use of knowledge-based restraints in phenix.refine to improve macromolecular refinement at low resolution , 2012, Acta crystallographica. Section D, Biological crystallography.

[6]  M. Baker,et al.  Outcome of the First Electron Microscopy Validation Task Force Meeting , 2012, Structure.

[7]  Axel T. Brunger,et al.  Model bias in macromolecular crystal structures , 1992 .

[8]  Clifford A Goudey,et al.  Aquaculture in Offshore Zones , 2006, Science.

[9]  W. Kühlbrandt The Resolution Revolution , 2014, Science.

[10]  P V Afonine,et al.  On a fast calculation of structure factors at a subatomic resolution. , 2004, Acta crystallographica. Section A, Foundations of crystallography.

[11]  Carsten Schultz,et al.  Recent developments of genetically encoded optical sensors for cell biology , 2017, Biology of the cell.

[12]  Sameer Velankar,et al.  Implementing an X-ray validation pipeline for the Protein Data Bank , 2012, Acta crystallographica. Section D, Biological crystallography.

[13]  John D. Westbrook,et al.  EMDataBank.org: unified data resource for CryoEM , 2010, Nucleic Acids Res..

[14]  José María Carazo,et al.  Fast and accurate conversion of atomic models into electron density maps , 2015 .

[15]  T. Jones,et al.  Between objectivity and subjectivity , 1990, Nature.

[16]  Sriram Subramaniam,et al.  Structure of trimeric HIV-1 envelope glycoproteins , 2013, Proceedings of the National Academy of Sciences.

[17]  Paul D. Adams,et al.  short communications Acta Crystallographica Section D Biological , 1998 .

[18]  Guy Schoehn,et al.  Fusion to a homo-oligomeric scaffold allows cryo-EM analysis of a small protein , 2016, Scientific Reports.

[19]  Randy J. Read,et al.  A New Generation of Crystallographic Validation Tools for the Protein Data Bank , 2011, Structure.

[20]  Mitsunori Ikeguchi,et al.  Ionic scattering factors of atoms that compose biological molecules , 2018, IUCrJ.

[21]  Dong-Hua Chen,et al.  Resolution and Probabilistic Models of Components in CryoEM Maps of Mature P22 Bacteriophage. , 2016, Biophysical journal.

[22]  Gabriel C. Lander,et al.  A multi-model approach to assessing local and global cryo-EM map quality , 2017, bioRxiv.

[23]  Thomas C Terwilliger,et al.  Automated map sharpening by maximization of detail and connectivity , 2018, bioRxiv.

[24]  Ardan Patwardhan,et al.  Improved metrics for comparing structures of macromolecular assemblies determined by 3D electron-microscopy , 2017, Journal of structural biology.

[25]  T. N. Bhat,et al.  The Protein Data Bank , 2000, Nucleic Acids Res..

[26]  Roland L Dunbrack,et al.  A forward-looking suggestion for resolving the stereochemical restraints debate: ideal geometry functions. , 2008, Acta crystallographica. Section D, Biological crystallography.

[27]  Paul D. Adams,et al.  FEM: feature-enhanced map , 2014, Acta crystallographica. Section D, Biological crystallography.

[28]  R. Henderson,et al.  Optimal determination of particle orientation, absolute hand, and contrast loss in single-particle electron cryomicroscopy. , 2003, Journal of molecular biology.

[29]  Nathaniel Echols,et al.  EMRinger: Side-chain-directed model and map validation for 3D Electron Cryomicroscopy , 2015, Nature Methods.

[30]  Marin van Heel,et al.  Reassessing the Revolution’s Resolutions , 2017, bioRxiv.

[31]  Piotr Neumann,et al.  Validating Resolution Revolution. , 2018, Structure.

[32]  L.-M. Peng,et al.  Electron Scattering Factors of Ions and their Parameterization , 1998 .

[33]  Hstau Y Liao,et al.  Definition and estimation of resolution in single-particle reconstructions. , 2010, Structure.

[34]  M. Jaskólski,et al.  Protein crystallography for non‐crystallographers, or how to get the best (but not more) from published macromolecular structures , 2008, The FEBS journal.

[35]  Michael S. Chapman,et al.  Restrained real-space macromolecular atomic refinement using a new resolution-dependent electron-density function , 1995 .

[36]  R. Henderson,et al.  High-resolution noise substitution to measure overfitting and validate resolution in 3D structure determination by single particle electron cryomicroscopy☆ , 2013, Ultramicroscopy.

[37]  R. Diamond A real-space refinement procedure for proteins , 1971 .

[38]  Begnaud Francis Hildebrand,et al.  Introduction to numerical analysis: 2nd edition , 1987 .

[39]  Carsten Sachse,et al.  Model-based local density sharpening of cryo-EM maps , 2017, eLife.

[40]  Youdong Mao,et al.  Reply to Subramaniam, van Heel, and Henderson: Validity of the cryo-electron microscopy structures of the HIV-1 envelope glycoprotein complex , 2013, Proceedings of the National Academy of Sciences.

[41]  W. O. Saxton,et al.  The correlation averaging of a regularly arranged bacterial cell envelope protein , 1982, Journal of microscopy.

[42]  Wah Chiu,et al.  Responses to `Atomic resolution': a badly abused term in structural biology. , 2017, Acta crystallographica. Section D, Structural biology.

[43]  Niels Volkmann,et al.  Confidence intervals for fitting of atomic models into low-resolution densities , 2009, Acta crystallographica. Section D, Biological crystallography.

[44]  P. D. Adams,et al.  Bulk-solvent and overall scaling revisited: faster calculations, improved results , 2013, Acta crystallographica. Section D, Biological crystallography.

[45]  Hemant D. Tagare,et al.  The Local Resolution of Cryo-EM Density Maps , 2013, Nature Methods.

[46]  Mindy I. Davis,et al.  Breaking Cryo-EM Resolution Barriers to Facilitate Drug Discovery , 2016, Cell.

[47]  Randy J. Read,et al.  Crystallography: Crystallographic evidence for deviating C3b structure , 2007, Nature.

[48]  M. van Heel,et al.  Fourier shell correlation threshold criteria. , 2005, Journal of structural biology.

[49]  Randy J. Read,et al.  Acta Crystallographica Section D Biological , 2003 .

[50]  J. Frank Three-Dimensional Electron Microscopy of Macromolecular Assemblies , 2006 .

[51]  M. Lakshminarasimhan,et al.  Evolution of New Enzymatic Function by Structural Modulation of Cysteine Reactivity in Pseudomonas fluorescens Isocyanide Hydratase* , 2010, The Journal of Biological Chemistry.

[52]  Paul D. Adams,et al.  phenix.model_vs_data: a high-level tool for the calculation of crystallographic model and data statistics , 2010, Journal of applied crystallography.

[53]  W. Chiu,et al.  Comparison of Segger and other methods for segmentation and rigid-body docking of molecular components in cryo-EM density maps. , 2012, Biopolymers.

[54]  Alexandre Urzhumtsev,et al.  The integrative role of cryo electron microscopy in molecular and cellular structural biology , 2017, Biology of the cell.

[55]  Boguslaw Stec,et al.  Comment on Stereochemical restraints revisited: how accurate are refinement targets and how much should protein structures be allowed to deviate from them? by Jaskolski, Gilski, Dauter & Wlodawer (2007). , 2007, Acta crystallographica. Section D, Biological crystallography.

[56]  Peter B Rosenthal,et al.  Validating maps from single particle electron cryomicroscopy. , 2015, Current opinion in structural biology.

[57]  A T Brünger,et al.  Protein hydration observed by X-ray diffraction. Solvation properties of penicillopepsin and neuraminidase crystal structures. , 1994, Journal of molecular biology.

[58]  J. Zou,et al.  Improved methods for building protein models in electron density maps and the location of errors in these models. , 1991, Acta crystallographica. Section A, Foundations of crystallography.

[59]  D. S. Moss,et al.  A strategy for combining restrained least squares with computer graphics in the refinement of protein structures , 1983 .

[60]  Jimin Wang,et al.  On the interpretation of electron microscopic maps of biological macromolecules , 2017, Protein science : a publication of the Protein Society.

[61]  Zbigniew Dauter,et al.  Numerology versus reality: a voice in a recent dispute. , 2007, Acta crystallographica. Section D, Biological crystallography.

[62]  Stuart Kleinfelder,et al.  Active pixel sensor array as a detector for electron microscopy. , 2005, Ultramicroscopy.

[63]  G. N. Ramachandran,et al.  Stereochemistry of polypeptide chain configurations. , 1963, Journal of molecular biology.

[64]  Richard Henderson,et al.  Avoiding the pitfalls of single particle cryo-electron microscopy: Einstein from noise , 2013, Proceedings of the National Academy of Sciences.

[65]  Ian J. Tickle,et al.  Statistical quality indicators for electron-density maps , 2012, Acta crystallographica. Section D, Biological crystallography.

[66]  H. Ng,et al.  Automated electron‐density sampling reveals widespread conformational polymorphism in proteins , 2010, Protein science : a publication of the Protein Society.

[67]  Marin van Heel,et al.  Finding trimeric HIV-1 envelope glycoproteins in random noise , 2013 .

[68]  Alan Brown,et al.  Tools for macromolecular model building and refinement into electron cryo-microscopy reconstructions , 2015, Acta crystallographica. Section D, Biological crystallography.

[69]  G J Williams,et al.  The Protein Data Bank: a computer-based archival file for macromolecular structures. , 1977, Journal of molecular biology.

[70]  Zbigniew Dauter,et al.  `Atomic resolution': a badly abused term in structural biology. , 2017, Acta crystallographica. Section D, Structural biology.

[71]  M. Heel,et al.  Exact filters for general geometry three dimensional reconstruction , 1986 .

[72]  Zbigniew Dauter,et al.  Stereochemical restraints revisited: how accurate are refinement targets and how much should protein structures be allowed to deviate from them? , 2007, Acta crystallographica. Section D, Biological crystallography.

[73]  I. Tickle,et al.  Experimental determination of optimal root-mean-square deviations of macromolecular bond lengths and angles from their restrained ideal values. , 2007, Acta crystallographica. Section D, Biological crystallography.

[74]  Marin van Heel,et al.  Similarity measures between images , 1987 .

[75]  Roderick MacKinnon,et al.  Structure of the voltage-gated K+ channel Eag1 reveals an alternative voltage sensing mechanism , 2016, Science.

[76]  P. Andrew Karplus,et al.  Linking Crystallographic Model and Data Quality , 2012, Science.

[77]  Talapady N. Bhat,et al.  OMITMAP: An electron density map suitable for the examination of errors in a macromolecular model , 1984 .

[78]  Conrad C. Huang,et al.  UCSF ChimeraX: Meeting modern challenges in visualization and analysis , 2018, Protein science : a publication of the Protein Society.

[79]  G J Kleywegt,et al.  Where freedom is given, liberties are taken. , 1995, Structure.

[80]  Randy J. Read,et al.  Interpretation of ensembles created by multiple iterative rebuilding of macromolecular models , 2007, Acta crystallographica. Section D, Biological crystallography.

[81]  J Frank,et al.  Escherichia coli 70 S ribosome at 15 A resolution by cryo-electron microscopy: localization of fMet-tRNAfMet and fitting of L1 protein. , 1998, Journal of molecular biology.

[82]  Jue Chen,et al.  Atomic Structure of the Cystic Fibrosis Transmembrane Conductance Regulator , 2016, Cell.

[83]  R Henderson,et al.  Evaluation of a hybrid pixel detector for electron microscopy. , 2003, Ultramicroscopy.

[84]  A. Brunger Free R value: a novel statistical quantity for assessing the accuracy of crystal structures. , 1992 .

[85]  Alexandre Urzhumtsev,et al.  On effective and optical resolutions of diffraction data sets. , 2013, Acta crystallographica. Section D, Biological crystallography.

[86]  Paul D. Adams,et al.  New tools for the analysis and validation of cryo-EM maps and atomic models , 2018, bioRxiv.

[87]  Paul D. Adams,et al.  Accurate model annotation of a near-atomic resolution cryo-EM map , 2017, Proceedings of the National Academy of Sciences.

[88]  J. Holton,et al.  Protein structural ensembles are revealed by redefining X-ray electron density noise , 2013, Proceedings of the National Academy of Sciences.

[89]  Randy J Read,et al.  Real-space refinement in PHENIX for cryo-EM and crystallography , 2018, bioRxiv.

[90]  Ottilie von Loeffelholz,et al.  Focused classification and refinement in high-resolution cryo-EM structural analysis of ribosome complexes. , 2017, Current opinion in structural biology.

[91]  Vincent B. Chen,et al.  Correspondence e-mail: , 2000 .

[92]  Paul D. Adams,et al.  On the handling of atomic anisotropic displacement parameters , 2002 .

[93]  Axel T. Brunger,et al.  Phase Improvement by Multi-Start Simulated Annealing Refinement and Structure-Factor Averaging , 1998 .

[94]  Arnold Neumaier,et al.  Introduction to Numerical Analysis , 2001 .

[95]  Sergei L. Dudarev,et al.  Robust Parameterization of Elastic and Absorptive Electron Atomic Scattering Factors , 1996 .

[96]  J Bernard Heymann,et al.  Bsoft: image processing and molecular modeling for electron microscopy. , 2007, Journal of structural biology.

[97]  G J Kleywegt,et al.  Validation of protein crystal structures. , 2000, Acta crystallographica. Section D, Biological crystallography.

[98]  V Y Lunin,et al.  Mean phase error and the map-correlation coefficient. , 1993, Acta crystallographica. Section D, Biological crystallography.

[99]  Naohiro Kobayashi,et al.  OneDep: Unified wwPDB System for Deposition, Biocuration, and Validation of Macromolecular Structures in the PDB Archive. , 2017, Structure.

[100]  C. Oubridge,et al.  CryoEM structure of the yeast U4/U6.U5 tri-snRNP at 3.7 Å resolution , 2016, Nature.

[101]  Paul D. Adams,et al.  Metrics for comparison of crystallographic maps , 2014, Acta crystallographica. Section D, Biological crystallography.

[102]  Philip R. Evans,et al.  How good are my data and what is the resolution? , 2013, Acta crystallographica. Section D, Biological crystallography.

[103]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[104]  P. Penczek Resolution measures in molecular electron microscopy. , 2010, Methods in enzymology.

[105]  A. Steven,et al.  One number does not fit all: mapping local variations in resolution in cryo-EM reconstructions. , 2013, Journal of structural biology.

[106]  A. Besson,et al.  Direct electron imaging in electron microscopy with monolithic active pixel sensors. , 2007, Ultramicroscopy.