On Communicating Automata with Bounded Channels

We review the characterization of communicating finite-state machines whose behaviors have universally or existentially bounded channels. These results rely on the theory of Mazurkiewicz traces. We investigate the question whether channel bound conditions are decidable for a given communicating finite-state machine.

[1]  Symbolic Verification of Communicating Systems with Probabilistic Message Losses: Liveness and Fairness , 2006, FORTE.

[2]  Madhavan Mukund,et al.  A theory of regular MSC languages , 2005, Inf. Comput..

[3]  Anca Muscholl,et al.  Infinite-state high-level MSCs: Model-checking and realizability , 2002, J. Comput. Syst. Sci..

[4]  Volker Diekert,et al.  The Book of Traces , 1995 .

[5]  S. Rao Kosaraju,et al.  Decidability of reachability in vector addition systems (Preliminary Version) , 1982, STOC '82.

[6]  Parosh Aziz Abdulla,et al.  Undecidable Verification Problems for Programs with Unreliable Channels , 1996, Inf. Comput..

[7]  Pierre Wolper,et al.  The Power of QDDs , 1997 .

[8]  Rémi Morin,et al.  Recognizable Sets of Message Sequence Charts , 2002, STACS.

[9]  Benedikt Bollig,et al.  Message-passing automata are expressively equivalent to EMSO logic , 2006, Theor. Comput. Sci..

[10]  P. Madhusudan,et al.  Beyond Message Sequence Graphs , 2001, FSTTCS.

[11]  Wieslaw Zielonka,et al.  Notes on Finite Asynchronous Automata , 1987, RAIRO Theor. Informatics Appl..

[12]  A. Mazurkiewicz Concurrent Program Schemes and their Interpretations , 1977 .

[13]  Dietrich Kuske,et al.  Regular sets of infinite message sequence charts , 2003, Inf. Comput..

[14]  Anca Muscholl,et al.  Compositional message sequence charts , 2001, International Journal on Software Tools for Technology Transfer.

[15]  Ahmed Bouajjani,et al.  Symbolic Reachability Analysis of FIFO-Channel Systems with Nonregular Sets of Configurations , 1999, Theor. Comput. Sci..

[16]  P. Madhusudan,et al.  Reasoning about Sequential and Branching Behaviours of Message Sequence Graphs , 2001, ICALP.

[17]  Parosh Aziz Abdulla,et al.  Verifying programs with unreliable channels , 1993, [1993] Proceedings Eighth Annual IEEE Symposium on Logic in Computer Science.

[18]  Philippe Schnoebelen,et al.  Well-structured transition systems everywhere! , 2001, Theor. Comput. Sci..

[19]  Ernst W. Mayr An Algorithm for the General Petri Net Reachability Problem , 1984, SIAM J. Comput..

[20]  Journal of the Association for Computing Machinery , 1961, Nature.

[21]  Philippe Schnoebelen,et al.  The Verification of Probabilistic Lossy Channel Systems , 2004, Validation of Stochastic Systems.

[22]  Wei Wei,et al.  A Scalable Incomplete Test for the Boundedness of UML RT Models , 2004, TACAS.

[23]  Anca Muscholl,et al.  Bounded MSC communication , 2002, Inf. Comput..

[24]  Parosh Aziz Abdulla,et al.  Verifying Programs with Unreliable Channels , 1996, Inf. Comput..

[25]  Rajeev Alur,et al.  Model Checking of Message Sequence Charts , 1999, CONCUR.

[26]  Anca Muscholl,et al.  Compositional Message Sequence Charts , 2001, TACAS.

[27]  Anca Muscholl,et al.  A Kleene theorem and model checking algorithms for existentially bounded communicating automata , 2006, Inf. Comput..

[28]  Patrice Godefroid,et al.  Symbolic Verification of Communication Protocols with Infinite State Spaces using QDDs , 1999, Formal Methods Syst. Des..

[29]  Anca Muscholl,et al.  Message Sequence Graphs and Decision Problems on Mazurkiewicz Traces , 1999, MFCS.

[30]  Daniel Brand,et al.  On Communicating Finite-State Machines , 1983, JACM.

[31]  Alain Finkel,et al.  Programs with Quasi-Stable Channels are Effectively Recognizable (Extended Abstract) , 1997, CAV.

[32]  Anca Muscholl,et al.  Logical Definability on Infinite Traces , 1996, Theor. Comput. Sci..

[33]  Philippe Schnoebelen,et al.  Verifying lossy channel systems has nonprimitive recursive complexity , 2002, Inf. Process. Lett..