Fundamental aspects of steady-state conversion of heat to work at the nanoscale

In recent years, the study of heat to work conversion has been re-invigorated by nanotechnology. Steady-state devices do this conversion without any macroscopic moving parts, through steady-state flows of microscopic particles such as electrons, photons, phonons, etc. This review aims to introduce some of the theories used to describe these steady-state flows in a variety of mesoscopic or nanoscale systems. These theories are introduced in the context of idealized machines which convert heat into electrical power (heat-engines) or convert electrical power into a heat flow (refrigerators). In this sense, the machines could be categorized as thermoelectrics, although this should be understood to include photovoltaics when the heat source is the sun. As quantum mechanics is important for most such machines, they fall into the field of quantum thermodynamics. In many cases, the machines we consider have few degrees of freedom, however the reservoirs of heat and work that they interact with are assumed to be macroscopic. This review discusses different theories which can take into account different aspects of mesoscopic and nanoscale physics, such as coherent quantum transport, magnetic-field induced effects (including topological ones such as the quantum Hall effect), and single electron charging effects. It discusses the efficiency of thermoelectric conversion, and the thermoelectric figure of merit. More specifically, the theories presented are (i) linear response theory with or without magnetic fields, (ii) Landauer scattering theory in the linear response regime and far from equilibrium, (iii) Green-Kubo formula for strongly interacting systems within the linear response regime, (iv) rate equation analysis for small quantum machines with or without ..... (SEE THE PDF FOR THE REST OF THIS ABSTRACT)

[1]  C. Beenakker Random-matrix theory of quantum transport , 1996, cond-mat/9612179.

[2]  R. Uzdin Coherence-Induced Reversibility and Collective Operation of Quantum Heat Machines via Coherence Recycling , 2016 .

[3]  C. Gorini,et al.  Gate-modulated thermopower of disordered nanowires: II. Variable-range hopping regime , 2014, 1403.7475.

[4]  C. Stafford,et al.  Cold spots in quantum systems far from equilibrium: Local entropies and temperatures near absolute zero , 2015, 1508.03385.

[5]  Bihong Lin,et al.  The performance of a quantum heat engine working with spin systems , 2002 .

[6]  Ronnie Kosloff,et al.  Quantum Heat Machines Equivalence, Work Extraction beyond Markovianity, and Strong Coupling via Heat Exchangers , 2016, Entropy.

[7]  Massimiliano Esposito,et al.  The unlikely Carnot efficiency , 2014, Nature Communications.

[8]  J. Eom,et al.  Phase Dependent Thermopower in Andreev Interferometers , 1998, cond-mat/9803371.

[9]  A. Leggett,et al.  Dynamics of the dissipative two-state system , 1987 .

[10]  G. V. Chester,et al.  Solid-State Physics , 1962, Nature.

[11]  T. E. Humphrey,et al.  Electronic efficiency in nanostructured thermionic and thermoelectric devices , 2005 .

[12]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[13]  H. Linke,et al.  Experimental verification of reciprocity relations in quantum thermoelectric transport , 2013, 1306.3694.

[14]  E. M.,et al.  Statistical Mechanics , 2021, Manual for Theoretical Chemistry.

[15]  P. Samuelsson,et al.  Optimal Quantum Interference Thermoelectric Heat Engine with Edge States. , 2016, Physical review letters.

[16]  K. Held,et al.  Origin of large thermopower inLiRh2O4: Calculation of the Seebeck coefficient by the combination of local density approximation and dynamical mean-field theory , 2008 .

[17]  Bihong Lin,et al.  Performance analysis of an irreversible quantum heat engine working with harmonic oscillators. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[18]  A. Malevanets,et al.  Mesoscopic model for solvent dynamics , 1999 .

[19]  D. Rowe CRC Handbook of Thermoelectrics , 1995 .

[20]  K. Lendi,et al.  Quantum Dynamical Semigroups and Applications , 1987 .

[21]  Yong Xu,et al.  Enhanced thermoelectric performance and anomalous seebeck effects in topological insulators. , 2014, Physical review letters.

[22]  B. Nartowt,et al.  Nonlinear thermoelectric transport: A class of nanodevices for high efficiency and large power output , 2013, 1307.5670.

[23]  Ichiro Terasaki,et al.  Large thermoelectric power in NaCo 2 O 4 single crystals , 1997 .

[24]  R. López,et al.  Nonlinear heat transport in mesoscopic conductors: Rectification, Peltier effect, and Wiedemann-Franz law , 2013, 1302.5557.

[25]  C. Stafford,et al.  Temperature and voltage measurement in quantum systems far from equilibrium , 2016, 1603.00096.

[26]  Marcus Huber,et al.  Autonomous quantum refrigerator in a circuit QED architecture based on a Josephson junction , 2016, 1607.05218.

[27]  Michele Campisi,et al.  The power of a critical heat engine , 2016, Nature Communications.

[28]  Electrical current from quantum vacuum fluctuations in nanoengines , 2015, 1504.02073.

[29]  J. Bowers,et al.  Cross-plane Seebeck coefficient and Lorenz number in superlattices , 2007 .

[30]  R. Kosloff,et al.  Characteristics of the limit cycle of a reciprocating quantum heat engine. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[31]  C. Van den Broeck,et al.  Cooling by heating: refrigeration powered by photons. , 2012, Physical review letters.

[32]  France.,et al.  Observation of the e/3 Fractionally Charged Laughlin Quasiparticle , 1997, cond-mat/9706307.

[33]  D. Ritchie,et al.  A non-invasive electron thermometer based on charge sensing of a quantum dot , 2013, 1305.6881.

[34]  Evans,et al.  Equilibrium microstates which generate second law violating steady states. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[35]  Tien D Kieu The second law, Maxwell's demon, and work derivable from quantum heat engines. , 2004, Physical review letters.

[36]  N. Nagaosa,et al.  Giant thermoelectric effect in graphene-based topological insulators with heavy adatoms and nanopores. , 2014, Nano letters.

[37]  M. Titov Thermopower oscillations in mesoscopic Andreev interferometers , 2008, 0810.0836.

[38]  Gorjan Alagic,et al.  #p , 2019, Quantum information & computation.

[39]  J. Pichard,et al.  Gate-modulated thermopower in disordered nanowires: I. Low temperature coherent regime , 2013, 1310.4923.

[40]  G. Kurizki,et al.  Quantum bath refrigeration towards absolute zero: challenging the unattainability principle. , 2012, Physical review letters.

[41]  J. Anders,et al.  Quantum thermodynamics , 2015, 1508.06099.

[42]  K. Temst,et al.  Superconductor responds to nano-scale change , 2005 .

[43]  T. Thornton,et al.  One-dimensional transport and the quantisation of the ballistic resistance , 1988 .

[44]  P. N. Butcher Thermal and electrical transport formalism for electronic microstructures with many terminals , 1990 .

[45]  A. Amir,et al.  The localization transition at finite temperatures: electric and thermal transport , 2010, 1004.0966.

[46]  O. Fialko,et al.  Isolated quantum heat engine. , 2011, Physical review letters.

[47]  C. Kittel Introduction to solid state physics , 1954 .

[48]  Lauryn L. Baranowski,et al.  Advances in Thermal Conductivity , 2012 .

[49]  Paul Skrzypczyk,et al.  The smallest refrigerators can reach maximal efficiency , 2010, 1009.0865.

[50]  Diana Adler,et al.  Electronic Transport In Mesoscopic Systems , 2016 .

[51]  Massimiliano Esposito,et al.  Efficiency at maximum power of low-dissipation Carnot engines. , 2010, Physical review letters.

[52]  M. R. Peterson,et al.  Dynamical thermal response functions for strongly correlated one-dimensional systems : Hubbard and spinless fermion t-V model , 2007, 0706.1058.

[53]  Arun Majumdar,et al.  Thermoelectricity in Molecular Junctions , 2007, Science.

[54]  A. Allahverdyan,et al.  Work extremum principle: structure and function of quantum heat engines. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[55]  M. Kanatzidis,et al.  New and old concepts in thermoelectric materials. , 2009, Angewandte Chemie.

[56]  Thermal conduction in classical low-dimensional lattices , 2001, cond-mat/0112193.

[57]  A. Shakouri Recent Developments in Semiconductor Thermoelectric Physics and Materials , 2011 .

[58]  Rafael Sánchez,et al.  Three-terminal energy harvester with coupled quantum dots. , 2015, Nature nanotechnology.

[59]  Massimiliano Esposito,et al.  Quantum-dot Carnot engine at maximum power. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[60]  G. Casati,et al.  Conservation laws and thermodynamic efficiencies. , 2013, Physical review letters.

[61]  Feldmann,et al.  Performance of discrete heat engines and heat pumps in finite time , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[62]  Franco Nori,et al.  Quantum thermodynamic cycles and quantum heat engines. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[63]  Sadi Carnot,et al.  Réflexions Sur La Puissance Motrice Du Feu Et Sur Les Machines Propres À Développer Cette Puissance , 2015 .

[64]  P. Jacquod,et al.  Scattering theory of nonlinear thermoelectricity in quantum coherent conductors , 2012, Journal of physics. Condensed matter : an Institute of Physics journal.

[65]  K. Held,et al.  The LDA+DMFT Route to Identify Good Thermoelectrics , 2009, 0903.2994.

[66]  R. Uzdin Collective operation of quantum heat machines via coherence recycling, and coherence induced reversibility , 2015, 1509.06289.

[68]  Rolf Landauer,et al.  Condensed-matter physics: The noise is the signal , 1998, Nature.

[69]  M. Büttiker Coherent and sequential tunneling in series barriers , 1988 .

[70]  R. Whitney Finding the quantum thermoelectric with maximal efficiency and minimal entropy production at given power output , 2014, 1408.3348.

[71]  D. Schuricht,et al.  Efficiency and power of a thermoelectric quantum dot device , 2013, 1301.3355.

[72]  G. Vignale,et al.  Density-functional theory of thermoelectric phenomena. , 2013, Physical review letters.

[73]  C. Lambert,et al.  Redox control of thermopower and figure of merit in phase-coherent molecular wires , 2014, Nanotechnology.

[74]  K. Held,et al.  Enhancement of the NaxCoO2 thermopower due to electronic correlations , 2010, 1104.1928.

[75]  Büttiker,et al.  Four-terminal phase-coherent conductance. , 1986, Physical review letters.

[76]  P. Mazur Non-ergodicity of phase functions in certain systems , 1969 .

[77]  B. Shastry Electrothermal transport coefficients at finite frequencies , 2008, 0806.4629.

[78]  K. Wysokiński Thermoelectric transport in the three terminal quantum dot , 2012, Journal of physics. Condensed matter : an Institute of Physics journal.

[79]  Caldeira,et al.  Zener transitions in dissipative driven systems. , 1987, Physical review. B, Condensed matter.

[80]  Baigeng Wang,et al.  Nonlinear I–V characteristics of a mesoscopic conductor , 1999, cond-mat/9902307.

[81]  Bernhard H. Haak,et al.  Open Quantum Systems , 2019, Tutorials, Schools, and Workshops in the Mathematical Sciences.

[82]  A. Nitzan,et al.  Electron transfer across a thermal gradient , 2016, Proceedings of the National Academy of Sciences.

[83]  G. Lindblad On the generators of quantum dynamical semigroups , 1976 .

[84]  Sebastian Volz,et al.  Molecular dynamics simulation of thermal conductivity of silicon nanowires , 1999 .

[85]  Reversal of thermopower oscillations in the mesoscopic Andreev interferometer , 2001, cond-mat/0107144.

[86]  Y Apertet,et al.  Irreversibilities and efficiency at maximum power of heat engines: the illustrative case of a thermoelectric generator. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[87]  A. Aharony,et al.  Transport through molecular junctions with a nonequilibrium phonon population , 2009, 0912.1569.

[88]  M. Bolsterli,et al.  Simulation of Nonharmonic Interactions in a Crystal by Self-Consistent Reservoirs , 1970 .

[89]  M. Dresselhaus,et al.  New Directions for Low‐Dimensional Thermoelectric Materials , 2007 .

[90]  David Sánchez,et al.  Periodic Energy Transport and Entropy Production in Quantum Electronics , 2016, Entropy.

[91]  Marlan O Scully,et al.  Quantum photocell: using quantum coherence to reduce radiative recombination and increase efficiency. , 2010, Physical review letters.

[92]  Michel Devoret,et al.  Single Charge Tunneling , 1992 .

[93]  Lambert,et al.  Thermoelectric properties of mesoscopic superconductors. , 1996, Physical Review B (Condensed Matter).

[94]  R. The Low Density Limit for an N-Level System Interacting with a Free Bose or Fermi Gas , 2022 .

[95]  P. Samuelsson,et al.  Energy and temperature fluctuations in the single electron box , 2015, 1506.05674.

[96]  TRANSPORT AND CONSERVATION LAWS , 1996, cond-mat/9611007.

[97]  Markus Buttiker,et al.  Powerful and efficient energy harvester with resonant-tunneling quantum dots , 2013, 1302.3366.

[98]  M. Büttiker,et al.  Magnon-driven quantum-dot heat engine , 2012, 1206.1259.

[99]  E. Pereira Thermal rectification in quantum graded mass systems , 2010, 1003.0313.

[100]  G. Casati,et al.  Thermoelectricity of interacting particles: a numerical approach. , 2015, Physical review. E, Statistical, nonlinear, and soft matter physics.

[101]  Geva,et al.  Three-level quantum amplifier as a heat engine: A study in finite-time thermodynamics. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[102]  Dvira Segal,et al.  Minimal model of a heat engine: information theory approach. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[103]  Susana F. Huelga,et al.  Markovian master equations: a critical study , 2010, 1006.4666.

[104]  F. Haupt,et al.  Energy and power fluctuations in ac-driven coherent conductors , 2014, 1405.4326.

[105]  Peter Salamon,et al.  Heat engines in finite time governed by master equations , 1996 .

[106]  C. Aslangul,et al.  Spin-boson systems: equivalence between the dilute-blip and the Born approximations , 1986 .

[107]  Ronnie Kosloff,et al.  Quantum heat engines and refrigerators: continuous devices. , 2013, Annual review of physical chemistry.

[108]  T. Prosen,et al.  A one-dimensional hard-point gas and thermoelectric efficiency , 2009 .

[109]  M. Planck Ueber das Gesetz der Energieverteilung im Normalspectrum , 1901 .

[110]  G. Casati,et al.  A microscopic mechanism for increasing thermoelectric efficiency , 2010, 1005.4744.

[111]  Unattainability of carnot efficiency in the brownian heat engine , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[112]  Y. Gefen,et al.  Onset of dissipation in Zener dynamics: Relaxation versus dephasing , 1991 .

[113]  Bernhard K. Meister,et al.  Entropy and temperature of a quantum Carnot engine , 2002, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[114]  Robert S. Whitney,et al.  Staying positive: going beyond Lindblad with perturbative master equations , 2007, 0711.0074.

[115]  Francesco Petruccione,et al.  The Theory of Open Quantum Systems , 2002 .

[116]  Jonathan Oppenheim,et al.  A general derivation and quantification of the third law of thermodynamics , 2014, Nature Communications.

[117]  J. Smet,et al.  MBE growth of ultra-low disorder 2DEG with mobility exceeding 35×106 cm2/V s , 2009 .

[118]  Jian-Sheng Wang,et al.  Boosting thermoelectric efficiency using time-dependent control , 2015, Scientific Reports.

[119]  B. Douçot,et al.  Production of nonlocal quartets and phase-sensitive entanglement in a superconducting beam splitter. , 2011, Physical review letters.

[120]  C. Broeck,et al.  Thermodynamic efficiency at maximum power. , 2005 .

[121]  J M Gordon,et al.  Quantum thermodynamic cooling cycle. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[122]  M. Bekele,et al.  Current, maximum power and optimized efficiency of a Brownian heat engine , 2004 .

[123]  H. Spohn Entropy production for quantum dynamical semigroups , 1978 .

[124]  S. Lepri Thermal transport in low dimensions : from statistical physics to nanoscale heat transfer , 2016 .

[125]  Herbert Spohn,et al.  Phase transitions in stationary nonequilibrium states of model lattice systems , 1983 .

[126]  Tien D. Kieu,et al.  Quantum heat engines, the second law and Maxwell's daemon , 2003 .

[127]  Armen E Allahverdyan,et al.  Optimal refrigerator. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[128]  H. Linke,et al.  Reversible thermoelectric nanomaterials. , 2004, Physical Review Letters.

[129]  Microscopic theory for the quantum to classical crossover in chaotic transport. , 2004, Physical review letters.

[130]  U. Seifert Stochastic thermodynamics, fluctuation theorems and molecular machines , 2012, Reports on progress in physics. Physical Society.

[131]  Electron transport in a one dimensional conductor with inelastic scattering by self-consistent reservoirs , 2006, cond-mat/0611274.

[132]  P. Hänggi,et al.  Driven quantum tunneling , 1998 .

[133]  F. Bloch,et al.  Generalized Theory of Relaxation , 1957 .

[134]  Alán Aspuru-Guzik,et al.  Strongly Coupled Quantum Heat Machines. , 2015, The journal of physical chemistry letters.

[135]  T. Heikkila,et al.  Thermoelectric effects in superconducting proximity structures , 2007, 0706.2306.

[136]  K. Knížek LDA +U calculation of electronic and thermoelectric properties of doped CuCoO 2 , 2015 .

[137]  Antoine Georges,et al.  A Thermoelectric Heat Engine with Ultracold Atoms , 2013, Science.

[138]  R. Kawai,et al.  Inertial effects in Büttiker-Landauer motor and refrigerator at the overdamped limit. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[139]  Williamson,et al.  Quantized conductance of point contacts in a two-dimensional electron gas. , 1988, Physical review letters.

[140]  P. Anderson,et al.  Definition and measurement of the electrical and thermal resistances , 1981 .

[141]  T. Prosen,et al.  Thermodyamic Bounds on Drude Weights in Terms of Almost-conserved Quantities , 2011, 1111.3830.

[142]  I. Derényi,et al.  Efficiency of Brownian heat engines. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[143]  Udo Seifert,et al.  Efficiency at maximum power: An analytically solvable model for stochastic heat engines , 2007, 0710.4097.

[144]  F. Ritort,et al.  Free-energy inference from partial work measurements in small systems , 2014, Proceedings of the National Academy of Sciences.

[145]  Giuliano Benenti,et al.  Thermodynamic bounds on efficiency for systems with broken time-reversal symmetry. , 2011, Physical review letters.

[146]  Christian Van Den Broeck,et al.  Stochastic thermodynamics: A brief introduction , 2013 .

[147]  L. Onsager Reciprocal Relations in Irreversible Processes. II. , 1931 .

[148]  T. Nakayama,et al.  Phonon-glass electron-crystal thermoelectric clathrates : Experiments and theory , 2014, 1402.5756.

[149]  Daniel S. Fisher,et al.  Relation between conductivity and transmission matrix , 1981 .

[150]  Y. Blanter,et al.  Shot noise in mesoscopic conductors , 1999, cond-mat/9910158.

[151]  F Hartmann,et al.  Voltage fluctuation to current converter with Coulomb-coupled quantum dots. , 2015, Physical review letters.

[152]  S. Nakajima On Quantum Theory of Transport Phenomena Steady Diffusion , 1958 .

[153]  Masahito Ueda,et al.  Second Law of Thermodynamics with Discrete Quantum Feedback Control , 2009 .

[154]  Massimiliano Di Ventra,et al.  Colloquium: Heat flow and thermoelectricity in atomic and molecular junctions , 2011 .

[155]  C. A. Perroni,et al.  Thermoelectric efficiency of molecular junctions , 2016, Journal of physics. Condensed matter : an Institute of Physics journal.

[156]  J. Pekola,et al.  Brownian refrigeration by hybrid tunnel junctions , 2011, 1104.5623.

[157]  J. Pekola,et al.  Violation of the Wiedemann-Franz law in a single-electron transistor. , 2007, Physical review letters.

[158]  Daniel A. Lidar,et al.  Quantum adiabatic Markovian master equations , 2012, 1206.4197.

[159]  Karel Proesmans,et al.  Onsager Coefficients in Periodically Driven Systems. , 2015, Physical review letters.

[160]  M. Rubin Optimal configuration of a class of irreversible heat engines. II , 1979 .

[161]  Independent electron model for open quantum systems: Landauer-Büttiker formula and strict positivity of the entropy production , 2006, math-ph/0610074.

[162]  T. Ojanen,et al.  Theory of single-electron heat engines coupled to electromagnetic environments , 2012, 1202.3911.

[163]  G. Blonder,et al.  Explanation of subharmonic energy gap structure in superconducting contacts , 1982 .

[164]  G. Catelani,et al.  Interaction corrections to thermal transport coefficients in disordered metals: The quantum kinetic equation approach , 2005 .

[165]  F. Haupt,et al.  Thermoelectric performance of a driven double quantum-dot , 2013, 1303.5225.

[166]  H Linke,et al.  Reversible quantum brownian heat engines for electrons. , 2002, Physical review letters.

[167]  V. Umansky,et al.  Direct observation of a fractional charge , 1997, Nature.

[168]  Jamie L. Cross,et al.  Current , 2017 .

[169]  Gernot Schaller,et al.  Thermodynamics of a physical model implementing a Maxwell demon. , 2012, Physical review letters.

[170]  M. Grifoni,et al.  Performance analysis of an interacting quantum dot thermoelectric setup , 2011, 1110.4537.

[171]  M. Zebarjadi,et al.  Nonlinear Peltier effect in semiconductors , 2007 .

[172]  Lei Wang,et al.  Colloquium : Phononics: Manipulating heat flow with electronic analogs and beyond , 2012 .

[173]  Ronnie Kosloff,et al.  The quantum heat engine and heat pump: An irreversible thermodynamic analysis of the three-level amplifier , 1996 .

[174]  A. Jordan,et al.  Quantum Nernst engines , 2014, 1406.5023.

[175]  C Van den Broeck,et al.  Brownian refrigerator. , 2006, Physical review letters.

[176]  D. Mahalu,et al.  Interference between two indistinguishable electrons from independent sources , 2007, Nature.

[177]  B. Gaveau,et al.  Stochastic thermodynamics and sustainable efficiency in work production. , 2010, Physical review letters.

[178]  N. Mott,et al.  Observation of Anderson Localization in an Electron Gas , 1969 .

[179]  C. Flindt,et al.  Hybrid microwave-cavity heat engine. , 2013, Physical review letters.

[180]  J. Rossnagel,et al.  A single-atom heat engine , 2015, Science.

[181]  Efficiency of autonomous soft nanomachines at maximum power. , 2010, Physical review letters.

[182]  Paul Skrzypczyk,et al.  How small can thermal machines be? The smallest possible refrigerator. , 2009, Physical review letters.

[183]  N. Mingo,et al.  Mesoscopic size effects on the thermal conductance of silicon nanowire. , 2009, Nano letters.

[184]  M. Wegewijs,et al.  Time-dependent quantum transport: Causal superfermions, exact fermion-parity protected decay modes, and Pauli exclusion principle for mixed quantum states , 2013, 1311.1368.

[185]  Michael Tinkham,et al.  Introduction to mesoscopic physics , 1997 .

[186]  Y. Izumida,et al.  Molecular kinetic analysis of a finite-time Carnot cycle , 2008, 0802.3759.

[187]  S. Datta,et al.  Thermoelectric effect in molecular electronics , 2003, cond-mat/0301232.

[188]  S. Mukerjee,et al.  Optimal thermoelectric figure of merit of a molecular junction , 2008, 0805.3374.

[189]  The low density limit for anN-level system interacting with a free bose or fermi gas , 1985 .

[190]  W. Zwerger Dynamics of a dissipative two level system , 1983 .

[191]  Herbert Spohn,et al.  Open quantum systems with time-dependent Hamiltonians and their linear response , 1978 .

[192]  P. Talkner,et al.  Colloquium: Quantum fluctuation relations: Foundations and applications , 2010, 1012.2268.

[193]  E. Sevick,et al.  The Kawasaki identity and the Fluctuation Theorem. , 2004, The Journal of chemical physics.

[194]  R. Franz,et al.  Ueber die Wärme-Leitungsfähigkeit der Metalle , 1853 .

[195]  Electronic heat transport across a molecular wire: Power spectrum of heat fluctuations , 2011, 1107.3434.

[196]  L. Stil’bans,et al.  Physical problems of thermoelectricity , 1959 .

[197]  H. B. G. Casimir,et al.  On Onsager's Principle of Microscopic Reversibility , 1945 .

[198]  G. Schon,et al.  COTUNNELING AT RESONANCE FOR THE SINGLE-ELECTRON TRANSISTOR , 1997, cond-mat/9702196.

[199]  Alfred G. Redfield,et al.  On the Theory of Relaxation Processes , 1957, IBM J. Res. Dev..

[200]  D. Mailly,et al.  Quantum coherence engineering in the integer quantum Hall regime. , 2012, Physical review letters.

[201]  H. Goldsmid,et al.  Introduction to Thermoelectricity , 2016 .

[202]  C. Lambert,et al.  Thermoelectric performance of various benzo-difuran wires. , 2013, The Journal of chemical physics.

[203]  Udo Seifert Entropy production along a stochastic trajectory and an integral fluctuation theorem. , 2005, Physical review letters.

[204]  D. Mailly,et al.  Tuning decoherence with a voltage probe. , 2009, Physical review letters.

[205]  V. Gavini,et al.  End-Group Induced Charge Transfer in Molecular Junctions: Effect on Electronic-Structure and Thermopower , 2012 .

[206]  Bihong Lin,et al.  The optimal performance of a quantum refrigeration cycle working with harmonic oscillators , 2003 .

[207]  A. Xuereb,et al.  Perspective on quantum thermodynamics , 2015, 1509.01086.

[208]  J. Bekenstein Entropy content and information flow in systems with limited energy , 1984 .

[209]  G. J. Snyder,et al.  Complex thermoelectric materials. , 2008, Nature materials.

[210]  Jerome Rothstein Information and Thermodynamics , 1952 .

[211]  Eric Pop,et al.  Heat Generation and Transport in Nanometer-Scale Transistors , 2006, Proceedings of the IEEE.

[212]  A. Cavanna,et al.  Quantum Limit of Heat Flow Across a Single Electronic Channel , 2013, Science.

[213]  C. Aslangul,et al.  Quantum dissipation: dynamics of a particle in a symmetric double well in the presence of non-ohmic friction , 1988 .

[214]  Ali Shakouri,et al.  Nanostructured Thermoelectrics: Big Efficiency Gains from Small Features , 2010, Advanced materials.

[215]  F. Disalvo,et al.  Thermoelectric cooling and power generation , 1999, Science.

[216]  H. L. Stormer,et al.  Four-terminal resistance of a ballistic quantum wire , 2001, Nature.

[217]  A. Aharony,et al.  Three-terminal thermoelectric transport under broken time-reversal symmetry , 2012 .

[218]  T. Prosen,et al.  Thermopower with broken time-reversal symmetry , 2011, 1107.1431.

[219]  Naoto Shiraishi,et al.  Universal Trade-Off Relation between Power and Efficiency for Heat Engines. , 2016, Physical review letters.

[220]  Marlan O Scully,et al.  Quantum heat engine power can be increased by noise-induced coherence , 2011, Proceedings of the National Academy of Sciences.

[221]  J. Pekola,et al.  Micrometre-scale refrigerators , 2012, Reports on progress in physics. Physical Society.

[222]  Robert S. Whitney Quantum Coherent Three-Terminal Thermoelectrics: Maximum Efficiency at Given Power Output , 2016, Entropy.

[223]  Seth Lloyd,et al.  Quantum-mechanical Maxwell’s demon , 1997 .

[224]  C. M. Bender,et al.  Quantum mechanical Carnot engine , 2000 .

[225]  Ronnie Kosloff,et al.  Equivalence of Quantum Heat Machines, and Quantum-Thermodynamic Signatures , 2015 .

[226]  R. Landauer Spatial variation of currents and fields due to localized scatterers in metallic conduction , 1988 .

[227]  Koji Okuda,et al.  Onsager coefficients of a finite-time Carnot cycle. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[228]  Abraham Nitzan,et al.  Maximum efficiency of state-space models of molecular scale engines , 2015 .

[229]  Aaron Szafer,et al.  What is measured when you measure a resistance?—The Landauer formula revisited , 1988 .

[230]  Fourier's Law for a Harmonic Crystal with Self-Consistent Stochastic Reservoirs , 2003, math-ph/0307035.

[231]  J. M. Sancho,et al.  Adiabatic elimination for systems of Brownian particles with nonconstant damping coefficients , 1982 .

[232]  N. Hatano,et al.  Thermodynamics of the mesoscopic thermoelectric heat engine beyond the linear-response regime. , 2015, Physical review. E, Statistical, nonlinear, and soft matter physics.

[233]  Spin-boson thermal rectifier. , 2004, Physical review letters.

[234]  R. Whitney,et al.  Most efficient quantum thermoelectric at finite power output. , 2013, Physical review letters.

[235]  G. Vineyard,et al.  Semiconductor Thermoelements and Thermoelectric Cooling , 1957 .

[236]  Stefano Curtarolo,et al.  Thermopower of molecular junctions: an ab initio study. , 2009, Nano letters.

[237]  Gang Chen,et al.  Applied Physics Reviews Nanoscale Thermal Transport. Ii. 2003–2012 , 2022 .

[238]  E. Davies,et al.  Markovian master equations. II , 1976 .

[239]  F. Hassler,et al.  Measurement and dephasing of a flux qubit due to heat currents , 2013, 1311.7561.

[240]  D. A. Lidar,et al.  Internal consistency of fault-tolerant quantum error correction in light of rigorous derivations of the quantum Markovian limit , 2006 .

[241]  David Sánchez,et al.  Thermoelectric transport of mesoscopic conductors coupled to voltage and thermal probes , 2011, 1107.3576.

[242]  F. Curzon,et al.  Efficiency of a Carnot engine at maximum power output , 1975 .

[243]  J. Cuevas,et al.  Length-dependent conductance and thermopower in single-molecule junctions of dithiolated oligophenylene derivatives: A density functional study , 2007, 0709.3588.

[244]  B. Sothmann,et al.  Quantum heat engines based on electronic Mach-Zehnder interferometers , 2015, 1502.04920.

[245]  A. Jordan,et al.  Chiral thermoelectrics with quantum Hall edge states. , 2014, Physical review letters.

[246]  Massimiliano Esposito,et al.  Thermoelectric efficiency at maximum power in a quantum dot , 2008, 0808.0216.

[247]  L. Pascal,et al.  Circuit approach to photonic heat transport , 2010, 1003.3217.

[248]  Admittance and Nonlinear Transport in Quantum Wires, Point Contacts, and Resonant Tunneling Barriers , 1996, cond-mat/9610025.

[249]  Gerardo Adesso,et al.  Performance bound for quantum absorption refrigerators. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[250]  N. P. Ong,et al.  Spin entropy as the likely source of enhanced thermopower in NaxCo2O4 , 2003, Nature.

[251]  Ali Shakouri,et al.  Improved thermoelectric power factor in metal-based superlattices. , 2004, Physical review letters.

[252]  A. Kirk Nuclear fusion: bringing a star down to Earth , 2015, 1503.08981.

[253]  M. Dresselhaus,et al.  Experimental study of the effect of quantum-well structures on the thermoelectric figure of merit , 1996, Fifteenth International Conference on Thermoelectrics. Proceedings ICT '96.

[254]  Y. Imry,et al.  Three-terminal semiconductor junction thermoelectric devices: improving performance , 2013, 1305.4612.

[255]  Kaoru Yamamoto,et al.  Efficiency bounds on thermoelectric transport in magnetic fields: The role of inelastic processes , 2016, 1609.03707.

[256]  Y. Oreg,et al.  Observed quantization of anyonic heat flow , 2016, Nature.

[257]  C. B. Vining The Thermoelectric Process , 1997 .

[258]  Ronnie Kosloff,et al.  The local approach to quantum transport may violate the second law of thermodynamics , 2014, 1402.3825.

[259]  Robert Alicki,et al.  The quantum open system as a model of the heat engine , 1979 .

[260]  Dmitri V. Voronine,et al.  Photosynthetic reaction center as a quantum heat engine , 2013, Proceedings of the National Academy of Sciences.

[261]  J. Koski,et al.  Experimental realization of a Szilard engine with a single electron , 2014, Proceedings of the National Academy of Sciences.

[262]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[263]  Arttu Luukanen,et al.  Opportunities for mesoscopics in thermometry and refrigeration: Physics and applications , 2005, cond-mat/0508093.

[264]  K. Wysokiński,et al.  Quantum dot as spin current generator and energy harvester , 2015 .

[265]  G. Benenti,et al.  Dynamical Casimir effect and minimal temperature in quantum thermodynamics , 2014, 1412.4819.

[266]  B.-Q. Ai,et al.  Heat flow and efficiency in a microscopic engine , 2005 .

[267]  U. Seifert,et al.  Classical Nernst engine. , 2013, Physical review letters.

[268]  Y. Alhassid,et al.  Statistical theory of Coulomb blockade oscillations: Quantum chaos in quantum dots. , 1992, Physical review letters.

[269]  Dekker Noninteracting-blip approximation for a two-level system coupled to a heat bath. , 1987, Physical review. A, General physics.

[270]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[271]  Y. Imry,et al.  Thermoelectric three-terminal hopping transport through one-dimensional nanosystems , 2012, 1201.4031.

[272]  P. Jacquod,et al.  Local temperature of out-of-equilibrium quantum electron systems , 2013, 1306.6345.

[273]  F. Marchesoni,et al.  Artificial Brownian motors: Controlling transport on the nanoscale , 2008, 0807.1283.

[274]  H Ouerdane,et al.  Efficiency at maximum power of thermally coupled heat engines. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[275]  D. Sprinzak,et al.  An electronic Mach–Zehnder interferometer , 2003, Nature.

[276]  A. Majumdar,et al.  Nanoscale thermal transport , 2003, Journal of Applied Physics.

[277]  Y. Alhassid,et al.  Signatures of exchange correlations in the thermopower of quantum dots , 2010, 1001.2315.

[278]  M. Moskalets,et al.  Dynamics of energy transport and entropy production in ac-driven quantum electron systems , 2016, 1604.02953.

[279]  R. Landauer Electrical resistance of disordered one-dimensional lattices , 1970 .

[280]  J. Lü,et al.  Quantum thermal transport in nanostructures , 2008, 0802.2761.

[281]  J.T.M. van Beek,et al.  Piezoresistive heat engine and refrigerator , 2010, 1001.3170.

[282]  C. Gorini,et al.  Thermoelectric effects in nanowire-based MOSFETs , 2016, 1612.07581.

[283]  B. Ai,et al.  Brownian micro-engines and refrigerators in a spatially periodic temperature field: Heat flow and performances , 2006 .

[284]  Marlan O Scully,et al.  Quantum afterburner: improving the efficiency of an ideal heat engine. , 2002, Physical review letters.

[285]  M. Leijnse,et al.  Kinetic equations for transport through single-molecule transistors , 2008, 0807.4027.

[286]  Alexander A. Balandin,et al.  Phonon heat conduction in a semiconductor nanowire , 2001 .

[287]  E. Maciá Thermoelectric Materials : Advances and Applications , 2015 .

[288]  Interaction-induced magnetic field asymmetry of nonlinear mesoscopic electrical transport , 2005, cond-mat/0507292.

[289]  H. Linke,et al.  Thermoelectric efficiency at maximum power in low-dimensional systems , 2010, 1010.1375.

[290]  Bihong Lin,et al.  Optimal analysis on the performance of an irreversible harmonic quantum Brayton refrigeration cycle. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[291]  C. Lambert,et al.  Cross-plane enhanced thermoelectricity and phonon suppression in graphene/MoS2 van der Waals heterostructures , 2016, 1611.01233.

[292]  D. Bassett,et al.  Thermal and electrical conductivity of approximately 100-nm permalloy, Ni, Co, Al, and Cu films and examination of the Wiedemann-Franz Law , 2015 .

[293]  P. Chambadal Les centrales nucléaires , 1957 .

[294]  O. Narayan,et al.  The Green–Kubo formula for heat conduction in open systems , 2008, 0809.4543.

[295]  G. Schwiete,et al.  Theory of thermal conductivity in the disordered electron liquid , 2015, 1510.06529.

[296]  Jian-Sheng Wang,et al.  Electron and phonon drag in thermoelectric transport through coherent molecular conductors , 2015, 1512.07471.

[297]  A. Jordan,et al.  Heat diode and engine based on quantum Hall edge states , 2015, 1503.02926.

[298]  Jian-Sheng Wang,et al.  Effects of electron-phonon interaction on thermal and electrical transport through molecular nano-conductors , 2015, 1501.06343.

[299]  Hicks,et al.  Effect of quantum-well structures on the thermoelectric figure of merit. , 1993, Physical review. B, Condensed matter.

[300]  E. O. Schulz-DuBois,et al.  Three-Level Masers as Heat Engines , 1959 .

[301]  Giuliano Benenti,et al.  Thermoelectric efficiency of three-terminal quantum thermal machines , 2014, 1404.0924.

[302]  I. I. Novikov The efficiency of atomic power stations (a review) , 1958 .

[303]  G. Benenti,et al.  Thermoelectric properties of an interacting quantum dot based heat engine , 2017, 1702.06042.

[304]  D. Segal,et al.  Quantum heat transfer in harmonic chains with self-consistent reservoirs: exact numerical simulations. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[305]  N. Mott,et al.  Electronic Processes In Non-Crystalline Materials , 1940 .

[306]  Semiclassical Theory of Quantum Chaotic Transport: Phase-Space Splitting , 2005, cond-mat/0509186.

[307]  A. Nitzan,et al.  Maximum efficiency of state-space models of nanoscale energy conversion devices. , 2016, The Journal of chemical physics.

[308]  Udo Seifert,et al.  Strong bounds on Onsager coefficients and efficiency for three-terminal thermoelectric transport in a magnetic field. , 2013, Physical review letters.

[309]  A. Hewson,et al.  Properties and applications of thermoelectric materials : the search for new materials for thermoelectric devices , 2009 .

[310]  A. Di Carlo,et al.  Non-equilibrium Green's functions in density functional tight binding: method and applications , 2008 .

[311]  Y. Imry,et al.  Hopping thermoelectric transport in finite systems: Boundary effects , 2013, 1301.5411.

[312]  Markus Buttiker,et al.  Optimal energy quanta to current conversion , 2010, 1008.3528.

[313]  Gerardo Adesso,et al.  Quantum-enhanced absorption refrigerators , 2013, Scientific Reports.

[314]  S. Olla,et al.  Heat Conduction and Entropy Production in Anharmonic Crystals with Self-Consistent Stochastic Reservoirs , 2008, 0809.0953.

[315]  George R. Schmidt,et al.  Radioisotope Power: A Key Technology for Deep Space Exploration , 2008 .

[316]  K. Flensberg,et al.  Nonlinear thermoelectric properties of molecular junctions with vibrational coupling , 2010, 1004.4500.

[317]  J. Ferrer,et al.  GOLLUM: a next-generation simulation tool for electron, thermal and spin transport , 2014, 1502.04966.

[318]  Udo Seifert,et al.  Thermodynamics of Micro- and Nano-Systems Driven by Periodic Temperature Variations , 2015, 1505.07771.

[319]  H. Larralde,et al.  Transport Properties of a Modified Lorentz Gas , 2002, cond-mat/0210117.

[320]  Paul Skrzypczyk,et al.  Virtual qubits, virtual temperatures, and the foundations of thermodynamics. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[321]  H. Fritzsche A general expression for the thermoelectric power , 1971 .

[322]  Ali Shakouri,et al.  Optimization of power and efficiency of thermoelectric devices with asymmetric thermal contacts , 2012 .

[323]  Robert S. Whitney,et al.  Thermodynamic and quantum bounds on nonlinear DC thermoelectric transport , 2012, 1211.4737.

[324]  W. Belzig,et al.  Nonlocal thermoelectric effects and nonlocal Onsager relations in a three-terminal proximity-coupled superconductor-ferromagnet device. , 2013, Physical review letters.

[325]  Paul Skrzypczyk,et al.  The role of quantum information in thermodynamics—a topical review , 2015, 1505.07835.

[326]  Carnot cycle for an oscillator , 2001, physics/0105048.

[327]  Udo Seifert,et al.  Multi-terminal thermoelectric transport in a magnetic field: bounds on Onsager coefficients and efficiency , 2013, 1308.2179.

[328]  M. Ratner,et al.  Forty years of molecular electronics: Non‐equilibrium heat and charge transport at the nanoscale , 2013 .

[329]  A. Landé Zur Quantentheorie der Strahlung , 1926 .

[330]  L. Molenkamp,et al.  Thermopower of a Chaotic Quantum Dot , 1999 .

[331]  K. Kawasaki,et al.  Nonlinear Effects in the Shear Viscosity of Critical Mixtures , 1967 .

[332]  M. Büttiker,et al.  Magnetic-field asymmetry of nonlinear mesoscopic transport. , 2004, Physical review letters.

[333]  A. Jordan,et al.  Effect of incoherent scattering on three-terminal quantum Hall thermoelectrics , 2015, 1507.00162.

[334]  F. Haupt,et al.  Fermion-parity duality and energy relaxation in interacting open systems , 2015, 1508.06145.

[335]  Clemens Bechinger,et al.  Realization of a micrometre-sized stochastic heat engine , 2011, Nature Physics.

[336]  J. Parrondo,et al.  Energetics of Brownian motors: a review , 2002 .

[337]  Ronnie Kosloff,et al.  Quantum refrigerators and the third law of thermodynamics. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[338]  Numerical Experiments of a Finite-Time Thermodynamic Cycle(The 50th Anniversary of the Alder Transition -Recent Progress on Computational Statistical Physics-) , 2009 .

[339]  Normal-metal-superconductor tunnel junction as a Brownian refrigerator. , 2007, Physical review letters.

[340]  F. Nori,et al.  Colloquium: Stimulating uncertainty: Amplifying the quantum vacuum with superconducting circuits , 2011, 1103.0835.

[341]  F. Haupt,et al.  Heat, molecular vibrations, and adiabatic driving in non‐equilibrium transport through interacting quantum dots , 2013, 1306.4343.

[342]  N. G. van Kampen,et al.  Relative stability in nonuniform temperature , 1988 .

[343]  L. Bruneau,et al.  Landauer-Büttiker Formula and Schrödinger Conjecture , 2012, 1201.3190.

[344]  W. Kobayashi,et al.  An oxide thermal rectifier , 2009, 0910.1153.

[345]  H. Schoeller Transport Theory of Interacting Quantum Dots , 1997 .

[346]  Robert S. Whitney,et al.  Nonlinear thermoelectricity in point contacts at pinch off: A catastrophe aids cooling , 2012, 1208.6130.

[347]  G. Beni,et al.  Thermopower in the correlated hopping regime , 1976 .

[348]  B. Andresen Current trends in finite-time thermodynamics. , 2011, Angewandte Chemie.

[349]  Ronnie Kosloff,et al.  Quantum absorption refrigerator. , 2011, Physical review letters.

[350]  G. Benenti,et al.  Validity of the Wiedemann-Franz law in small molecular wires , 2012, 1202.5109.

[351]  David Sánchez,et al.  Scattering theory of nonlinear thermoelectric transport. , 2012, Physical review letters.

[352]  B. Sothmann Electronic waiting-time distribution of a quantum-dot spin valve , 2014, 1408.6092.

[353]  R. Zwanzig Ensemble Method in the Theory of Irreversibility , 1960 .

[354]  河本 邦仁,et al.  Thermoelectric Nanomaterials: Materials Design and Applications , 2013 .

[355]  T. M. Klapwijk,et al.  Subharmonic energy-gap structure in superconducting constrictions , 1983 .

[356]  P. Jacquod,et al.  Coherent thermoelectric effects in mesoscopic Andreev interferometers , 2009, 0910.2943.

[357]  Mesfin T Asfaw,et al.  Exploring the operation of a tiny heat engine , 2006, cond-mat/0605233.

[358]  A. Tremblay,et al.  Entropy, frustration, and large thermopower of doped Mott insulators on the fcc lattice , 2012, 1209.4349.

[359]  Nahuel Freitas,et al.  Fundamental limits for cooling of linear quantum refrigerators. , 2016, Physical review. E.

[360]  A. Aharony,et al.  Enhanced performance of joint cooling and energy production , 2014, 1410.4880.

[361]  Failure of the Wiedemann-Franz law in mesoscopic conductors , 2005, cond-mat/0505695.

[362]  Armen E Allahverdyan,et al.  Carnot cycle at finite power: attainability of maximal efficiency. , 2013, Physical review letters.

[363]  G. Crooks Entropy production fluctuation theorem and the nonequilibrium work relation for free energy differences. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[364]  E. Davies,et al.  Markovian master equations , 1974 .

[365]  C. Lambert,et al.  Tuning thermoelectric properties of graphene/boron nitride heterostructures , 2015, Nanotechnology.

[366]  C. Grenier,et al.  Peltier cooling of fermionic quantum gases. , 2014, Physical review letters.

[367]  Ronnie Kosloff,et al.  A quantum mechanical open system as a model of a heat engine , 1984 .

[368]  G. Mahan,et al.  The best thermoelectric. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[369]  Markus Buttiker,et al.  Onsager relations in coupled electric, thermoelectric, and spin transport: The tenfold way , 2012, 1207.1629.

[370]  M. Dresselhaus,et al.  Thermoelectric figure of merit of a one-dimensional conductor. , 1993, Physical review. B, Condensed matter.

[371]  van Houten H,et al.  Peltier coefficient and thermal conductance of a quantum point contact. , 1992, Physical review letters.

[372]  Enhanced thermoelectric coupling near electronic phase transition: the role of fluctuation Cooper pairs , 2014, 1412.8641.

[373]  Robert A. Harris,et al.  Variational calculation of the dynamics of a two level system interacting with a bath , 1984 .

[374]  J. Mercure,et al.  Gross violation of the Wiedemann–Franz law in a quasi-one-dimensional conductor , 2011, Nature communications.

[375]  Markus Buttiker,et al.  Rectification of thermal fluctuations in a chaotic cavity heat engine , 2012, 1201.2796.

[376]  장윤희,et al.  Y. , 2003, Industrial and Labor Relations Terms.

[377]  J. E. Geusic,et al.  Three Level Spin Refrigeration and Maser Action at 1500 mc/sec , 1959 .

[378]  Markus Buttiker,et al.  Powerful energy harvester based on resonant-tunneling quantum wells , 2013, 1309.7907.

[379]  Markus Buttiker,et al.  Detection of single-electron heat transfer statistics , 2012, 1207.2587.

[380]  Increasing the thermopower of crown-ether-bridged anthraquinones. , 2015, Nanoscale.

[381]  A. Nitzan,et al.  Quantum thermodynamics of the driven resonant level model , 2015, 1511.03276.

[382]  Y. Imry PHYSICS OF MESOSCOPIC SYSTEMS , 1986 .

[383]  G. Mahan Many-particle physics , 1981 .

[384]  Transport in one dimensional quantum systems , 2003, cond-mat/0304630.

[385]  B. V. van Wees,et al.  Spin caloritronics. , 2011, Nature materials.

[386]  Ronnie Kosloff,et al.  A quantum-mechanical heat engine operating in finite time. A model consisting of spin-1/2 systems as the working fluid , 1992 .

[387]  R. Seviour,et al.  Giant thermo-emf in multiterminal superconductor/normal-metal mesoscopic structures , 2000, cond-mat/0005465.

[388]  Rolf Landauer,et al.  Motion out of noisy states , 1988 .

[389]  Giulio Casati,et al.  Increasing thermoelectric efficiency: a dynamical systems approach. , 2008, Physical review letters.

[390]  Davide Venturelli,et al.  Minimal self-contained quantum refrigeration machine based on four quantum dots. , 2012, Physical review letters.

[391]  R. D’Agosta Towards a dynamical approach to the calculation of the figure of merit of thermoelectric nanoscale devices. , 2012, Physical chemistry chemical physics : PCCP.

[392]  Jincan Chen,et al.  Quantum refrigeration cycles using spin-1/2 systems as the working substance. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[393]  F. Rempp,et al.  Quantum thermodynamic Otto machines: A spin-system approach , 2007 .

[394]  B. D'ora Wiedemann-Franz law in the SU(N) Wolff model , 2006, cond-mat/0602374.

[395]  J. Bekenstein Energy Cost of Information Transfer , 1981 .

[396]  Büttiker,et al.  Quantized transmission of a saddle-point constriction. , 1990, Physical review. B, Condensed matter.

[397]  P. Cadden-Zimansky,et al.  Cooper-pair-mediated coherence between two normal metals , 2009 .

[398]  P. Jacquet ThermoElectric Transport Properties of a Chain of Quantum Dots with Self-Consistent Reservoirs , 2008, 0808.0825.

[399]  S. Nakajima,et al.  On Quantum Theory of Transport Phenomena , 1959 .

[400]  Maynard,et al.  Thermal conductance and giant fluctuations in one-dimensional disordered systems. , 1985, Physical review. B, Condensed matter.

[401]  M. Zebarjadi,et al.  Nanoengineered Materials for Thermoelectric Energy Conversion , 2009 .

[402]  P. Hänggi,et al.  Brownian motors driven by temperature oscillations , 1996 .

[403]  Shin-ichi Sasa,et al.  Stochastic energetics of non-uniform temperature systems , 1998 .

[404]  J. Parrondo,et al.  Entropy production and thermodynamic power of the squeezed thermal reservoir. , 2015, Physical review. E.

[405]  Dvira Segal,et al.  Efficiency Statistics and Bounds for Systems with Broken Time-Reversal Symmetry. , 2015, Physical review letters.

[406]  J. Burzler,et al.  Endoreversible Thermodynamics , 2006 .

[407]  R. Wolfe,et al.  NEGATIVE THERMOELECTRIC FIGURE OF MERIT IN A MAGNETIC FIELD , 1963 .

[408]  Controlling the Energy Flow in Nonlinear Lattices: A Model for a Thermal Rectifier , 2002, cond-mat/0201125.

[409]  C. Stafford,et al.  Giant thermoelectric effect from transmission supernodes. , 2010, ACS nano.

[410]  R. López,et al.  Thermoelectric effects in quantum Hall systems beyond linear response , 2014, 1505.03483.

[411]  F. Oppen,et al.  Adiabatic response and quantum thermoelectrics for ac-driven quantum systems , 2015, 1506.08617.

[412]  K. West,et al.  Insulating and fractional quantum hall states in the first excited Landau level. , 2001, Physical review letters.

[413]  M. Ventra Electrical Transport in Nanoscale Systems , 2008 .

[414]  D. Ritchie,et al.  Electronic refrigeration of a two-dimensional electron gas. , 2009, Physical review letters.

[415]  A. Dhar Heat transport in low-dimensional systems , 2008, 0808.3256.

[416]  Tu Zhan-Chun Recent advance on the efficiency at maximum power of heat engines , 2012 .

[417]  M. Moskalets,et al.  Dynamical energy transfer in ac-driven quantum systems , 2013, 1311.4945.

[418]  Jeffrey M. Gordon,et al.  Cool thermodynamics : The engineering and physics of predictive, diagnostic and optimization methods for cooling systems , 2000 .

[419]  Massimiliano Esposito,et al.  Efficiency fluctuations in quantum thermoelectric devices , 2015 .

[420]  Thermo-electric properties of quantum point contacts , 1992, cond-mat/0512612.

[421]  Ali Shakouri,et al.  Demonstration of electron filtering to increase the Seebeck coefficient in In0.53Ga0.47As/In0.53Ga0.28Al0.19As superlattices , 2006 .

[422]  C. Stafford Local temperature of an interacting quantum system far from equilibrium , 2014, 1409.3179.

[423]  Aashish A. Clerk,et al.  Quantum heat engine based on photon-assisted Cooper pair tunneling , 2015, 1512.02165.

[424]  Udo Seifert,et al.  Stochastic thermodynamics: principles and perspectives , 2007, 0710.1187.

[425]  Asymmetric Heat Flow in Mesoscopic Magnetic System , 2006, cond-mat/0602621.

[426]  Imry,et al.  Multichannel Landauer formula for thermoelectric transport with application to thermopower near the mobility edge. , 1986, Physical review. B, Condensed matter.

[427]  Ronnie Kosloff,et al.  Quantum Thermodynamics: A Dynamical Viewpoint , 2013, Entropy.

[428]  Coupled normal heat and matter transport in a simple model system. , 2000, Physical review letters.

[429]  R J Schoelkopf,et al.  Photon-mediated thermal relaxation of electrons in nanostructures. , 2004, Physical review letters.

[430]  C. Gorini,et al.  Using Activated Transport in Parallel Nanowires for Energy Harvesting and Hot Spot Cooling , 2014, 1407.7020.

[431]  K. Burke,et al.  Density functional theory of the electrical conductivity of molecular devices. , 2005, Physical review letters.

[432]  Udo Seifert,et al.  Bound on thermoelectric power in a magnetic field within linear response. , 2015, Physical review. E, Statistical, nonlinear, and soft matter physics.

[433]  A. Garg,et al.  Large violation of the Wiedemann-Franz law in Luttinger liquids. , 2009, Physical review letters.

[434]  A. Aharony,et al.  Three-terminal thermoelectric transport through a molecular junction , 2010, 1005.3940.

[435]  R. Kosloff,et al.  Universal features in the efficiency at maximal work of hot quantum Otto engines , 2014, 1406.6788.

[436]  Y. Alhassid,et al.  The Statistical theory of quantum dots , 2000, cond-mat/0102268.

[437]  John B. Pendry,et al.  Quantum limits to the flow of information and entropy , 1983 .

[438]  G. Casati,et al.  Thermoelectric efficiency in momentum-conserving systems , 2013, 1311.5987.

[439]  D. Mailly,et al.  Direct measurement of the coherence length of edge states in the integer quantum Hall regime. , 2007, Physical review letters.

[440]  D. A. Ritchie,et al.  Harvesting dissipated energy with a mesoscopic ratchet , 2015, Nature Communications.

[441]  P. Mazur,et al.  Non-equilibrium thermodynamics, , 1963 .

[442]  Marlan O Scully,et al.  Extracting work from a single heat bath via vanishing quantum coherence. , 2002, Science.

[443]  Thermopower of single-molecule devices , 2004, cond-mat/0405453.

[444]  H. Linke,et al.  Lineshape of the thermopower of quantum dots , 2011, 1110.0352.

[445]  L. Vannucci,et al.  Interference-induced thermoelectric switching and heat rectification in quantum Hall junctions , 2015, 1506.06547.

[446]  M. Hybertsen,et al.  Length-dependent thermopower of highly conducting Au-C bonded single molecule junctions. , 2013, Nano letters.

[447]  Rafael Sánchez,et al.  Thermoelectric energy harvesting with quantum dots , 2014, Nanotechnology.

[448]  C. P. Sun,et al.  Maxwell's demon assisted thermodynamic cycle in superconducting quantum circuits. , 2005, Physical review letters.

[449]  U. Eckern,et al.  Optimisation of a three-terminal nonlinear heat nano-engine , 2016, 1601.02971.

[450]  C. Lambert,et al.  Giant thermopower and figure of merit in single-molecule devices , 2008, 0811.3029.

[451]  R. Kubo Statistical Physics II: Nonequilibrium Statistical Mechanics , 2003 .

[452]  Massimiliano Esposito,et al.  Universality of efficiency at maximum power. , 2009, Physical review letters.

[453]  M. Esposito,et al.  Quantum thermodynamics: a nonequilibrium Green's function approach. , 2014, Physical review letters.

[454]  A. P. Gonçalves,et al.  Role of Structures on Thermal Conductivity in Thermoelectric Materials , 2009 .

[455]  D. Segal,et al.  The probe technique far from equilibrium: Magnetic field symmetries of nonlinear transport , 2013, 1310.1409.

[456]  Mark Ratner,et al.  A brief history of molecular electronics. , 2013, Nature nanotechnology.

[457]  H. Bent The second law , 1965 .

[458]  M. Suzuki Ergodicity, constants of motion, and bounds for susceptibilities , 1971 .

[459]  Massimiliano Esposito,et al.  Reaching optimal efficiencies using nanosized photoelectric devices , 2009, 0907.4189.

[460]  李幼升,et al.  Ph , 1989 .

[461]  H. Callen Thermodynamics and an Introduction to Thermostatistics , 1988 .

[462]  Robert S. Whitney,et al.  Thermoelectricity without absorbing energy from the heat sources , 2015, 1508.04368.

[463]  A. Jordan,et al.  Correlations of heat and charge currents in quantum-dot thermoelectric engines , 2013, 1307.0598.

[464]  F. Michelini,et al.  Mixed, charge and heat noises in thermoelectric nanosystems , 2014, Journal of physics. Condensed matter : an Institute of Physics journal.

[465]  J. Rossnagel,et al.  Nanoscale heat engine beyond the Carnot limit. , 2013, Physical review letters.

[466]  T. Micklitz,et al.  Transport properties of partially equilibrated quantum wires , 2009, 0910.3389.

[467]  Supriyo Datta,et al.  Lessons from Nanoelectronics: A New Perspective on Transport , 2012 .

[468]  Massimiliano Esposito,et al.  Ensemble and trajectory thermodynamics: A brief introduction , 2014, 1403.1777.

[469]  V. Giovannetti,et al.  Separation of heat and charge currents for boosted thermoelectric conversion , 2015, 1503.01601.

[470]  Franco Nori,et al.  Colloquium: The physics of Maxwell's demon and information , 2007, 0707.3400.

[471]  J Eisert,et al.  Cooling by heating: very hot thermal light can significantly cool quantum systems. , 2011, Physical review letters.

[472]  Ronnie Kosloff,et al.  Irreversible performance of a quantum harmonic heat engine , 2006 .

[473]  Schoen,et al.  Mesoscopic quantum transport: Resonant tunneling in the presence of a strong Coulomb interaction. , 1994, Physical review. B, Condensed matter.

[474]  M. Devoret,et al.  Energy distribution function of quasiparticles in mesoscopic wires , 1997 .