Scattering Cancellation-Based Cloaking for the Maxwell-Cattaneo Heat Waves

In this work we theoretically propose scattering cancellation-based cloaks for heat waves that obey the Maxwell-Cattaneo equation. The proposed cloaks possess carefully tailored diffusivity to cancel the dipole scattering from the object that they surround, and thus can render a small object invisible in the near and far fields, as demonstrated by full-wave finite-element simulations. Mantle heat cloaking is further analyzed and proposed to simplify the design and bring this cloaking technology one step closer to its practical implementation, with promising applications in nanoelectronics and defense related applications.

[1]  M. Ostoja-Starzewski,et al.  Telegraph equation: two types of harmonic waves, a discontinuity wave, and a spectral finite element , 2019, Acta Mechanica.

[2]  M Barrett,et al.  HEAT WAVES , 2019, The Year of the Femme.

[3]  S. Guenneau,et al.  Frequency domain transformation optics for diffusive photon density waves' cloaking. , 2018, Optics express.

[4]  T. Hayat,et al.  Effect of Cattaneo-Christov heat flux on Jeffrey fluid flow with variable thermal conductivity , 2018 .

[5]  Grigorios A. Pavliotis,et al.  Cloaking via Mapping for the Heat Equation , 2017, Multiscale Model. Simul..

[6]  Hongyu Liu,et al.  On anomalous localized resonance and plasmonic cloaking beyond the quasi-static limit , 2017, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[7]  D. Torrent,et al.  Nonreciprocal Thermal Material by Spatiotemporal Modulation. , 2017, Physical review letters.

[8]  S. Guenneau,et al.  Theory of diffusive light scattering cancellation cloaking , 2016, 1603.00985.

[9]  S. Guenneau,et al.  Thermal invisibility based on scattering cancellation and mantle cloaking , 2015, Scientific Reports.

[10]  M. Farhat,et al.  Platonic Scattering Cancellation for Bending Waves in a Thin Plate , 2014, Scientific Reports.

[11]  Fei Gao,et al.  Ultrathin three-dimensional thermal cloak. , 2014, Physical review letters.

[12]  Tiancheng Han,et al.  Experimental demonstration of a bilayer thermal cloak. , 2014, Physical review letters.

[13]  Martin Maldovan,et al.  Sound and heat revolutions in phononics , 2013, Nature.

[14]  Claude Amra,et al.  Anisotropic conductivity rotates heat fluxes in transient regimes. , 2013, Optics express.

[15]  R. Fleury,et al.  Quantum cloaking based on scattering cancellation , 2013 .

[16]  S. Guenneau,et al.  Frequency-selective surface acoustic invisibility for three-dimensional immersed objects , 2012 .

[17]  M. Wegener,et al.  Experiments on transformation thermodynamics: molding the flow of heat. , 2012, Physical review letters.

[18]  A. Alú,et al.  Analytical modeling of conformal mantle cloaks for cylindrical objects using sub-wavelength printed and slotted arrays , 2012 .

[19]  A. Monti,et al.  Metasurface mantle cloak for antenna applications , 2012, Proceedings of the 2012 IEEE International Symposium on Antennas and Propagation.

[20]  Claude Amra,et al.  Transformation thermodynamics: cloaking and concentrating heat flux. , 2012, Optics express.

[21]  Andrea Alù,et al.  Acoustic scattering cancellation via ultrathin pseudo-surface , 2011 .

[22]  A. Alú,et al.  Mantle cloaking using thin patterned metasurfaces , 2011 .

[23]  A. Alú,et al.  Plasmonic cloaking and scattering cancelation for electromagnetic and acoustic waves , 2011 .

[24]  D. Rainwater,et al.  Experimental verification of three-dimensional plasmonic cloaking in free-space , 2011, 1107.3740.

[25]  M. Haberman,et al.  Cancellation of acoustic scattering from an elastic sphere. , 2011, The Journal of the Acoustical Society of America.

[26]  A. Alú,et al.  Mantle cloak: Invisibility induced by a surface , 2009 .

[27]  M. Ostoja-Starzewski A derivation of the Maxwell–Cattaneo equation from the free energy and dissipation potentials , 2009 .

[28]  Christo I. Christov,et al.  On frame indifferent formulation of the Maxwell-Cattaneo model of finite-speed heat conduction , 2009 .

[29]  A. Kildishev,et al.  Anisotropic metamaterials emulated by tapered waveguides: application to optical cloaking. , 2009, Physical review letters.

[30]  Huanyang Chen,et al.  Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell. , 2008, Physical review letters.

[31]  S. Guenneau,et al.  A homogenization route towards square cylindrical acoustic cloaks , 2008 .

[32]  F. Bilotti,et al.  Plasmonic Metamaterial Cloaking at Optical Frequencies , 2008, IEEE Transactions on Nanotechnology.

[33]  R. McPhedran,et al.  Quasistatic cloaking of two-dimensional polarizable discrete systems by anomalous resonance. , 2007, Optics express.

[34]  N. Engheta,et al.  Plasmonic materials in transparency and cloaking problems: mechanism, robustness, and physical insights. , 2007, Optics express.

[35]  Vladimir M. Shalaev,et al.  Optical cloaking with metamaterials , 2006, physics/0611242.

[36]  David R. Smith,et al.  Metamaterial Electromagnetic Cloak at Microwave Frequencies , 2006, Science.

[37]  G. Milton,et al.  On the cloaking effects associated with anomalous localized resonance , 2006, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[38]  U. Leonhardt Optical Conformal Mapping , 2006, Science.

[39]  C. Christov,et al.  Heat conduction paradox involving second-sound propagation in moving media. , 2005, Physical review letters.

[40]  N. Engheta,et al.  Achieving transparency with plasmonic and metamaterial coatings. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[41]  A. Einstein,et al.  A Brief Outline of the Development of the Theory of Relativity , 1921, Nature.

[42]  Meirong Zhang,et al.  A relationship between the periodic and the Dirichlet BVPs of singular differential equations , 1998, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.