LikeDM: Likelihood calculator of dark matter detection

With the large progress in searches for dark matter (DM) particles with indirect and direct methods, we develop a numerical tool that enables fast calculations of the likelihoods of specified DM particle models given a number of observational data, such as charged cosmic rays from space-borne experiments (e.g., PAMELA, AMS-02), gamma-rays from the Fermi space telescope, and underground direct detection experiments. The purpose of this tool - LIKEDM, likelihood calculator for dark matter detection - is to bridge the gap between a particle model of DM and the observational data. The intermediate steps between these two, including the astrophysical backgrounds, the propagation of charged particles, the analysis of Fermi gamma-ray data, as well as the DM velocity distribution and the nuclear form factor, have been dealt with in the code. We release the first version (v1.0) focusing on the constraints from indirect detection of DM with charged cosmic and gamma rays. Direct detection will be implemented in the next version. This manual describes the framework, usage, and related physics of the code. Program summary Program Title: LIKEDM Program Files doi: http://dx.doi.org/10.17632/p93d3ksfvd.1 Licensing provisions: GPLv3 Programming language: FORTRAN 90 and Python Nature of problem: Dealing with the intermediate steps between a dark matter model and data. Solution method: Fast computation of the likelihood of a given dark matter model (defined by a mass, cross section or decay rate, and annihilation or decay yield spectrum), without digging into the details of cosmic-ray propagation, Fermi-LAT data analysis, or related astrophysical backgrounds. (C) 2017 Elsevier B.V. All rights reserved.

[1]  R. Sagdeev,et al.  High statistics measurement of the positron fraction in primary cosmic rays of 0.5-500 GeV with the alpha magnetic spectrometer on the international space station. , 2014, Physical review letters.

[2]  A. Strong,et al.  Propagation of Cosmic-Ray Nucleons in the Galaxy , 1998, astro-ph/9807150.

[3]  L. Bergström Dark matter evidence, particle physics candidates and detection methods , 2012 .

[4]  Igor V. Moskalenko,et al.  Cosmic-Ray Propagation and Interactions in the Galaxy , 2007 .

[5]  V. Malvezzi,et al.  PAMELA results on the cosmic-ray antiproton flux from 60 MeV to 180 GeV in kinetic energy. , 2010, Physical review letters.

[6]  E. Seo,et al.  Additional acceleration of cosmic rays in the interstellar medium , 1981 .

[7]  M. Walker,et al.  Comprehensive search for dark matter annihilation in dwarf galaxies , 2014, 1410.2242.

[8]  J. T. Childers,et al.  Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC , 2012 .

[9]  Ryszard S. Romaniuk,et al.  Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC , 2012 .

[10]  Guo-ming Chen,et al.  Implications of the AMS-02 positron fraction in cosmic rays , 2013, 1304.1482.

[11]  B. Yanny,et al.  EIGHT NEW MILKY WAY COMPANIONS DISCOVERED IN FIRST-YEAR DARK ENERGY SURVEY DATA , 2015, 1503.02584.

[12]  Mario Kadastik,et al.  PPPC 4 DM ID: a poor particle physicist cookbook for dark matter indirect detection , 2010, 1012.4515.

[13]  Jonathan L. Feng,et al.  Precision Measurement of the $\left({e}^{+}+{e}^{-}\right)$ Flux in Primary Cosmic Rays from 0.5 GeV to 1 TeV with the Alpha Magnetic Spectrometer on the International Space Station , 2014 .

[14]  P. Lipari,et al.  First Result from the Alpha Magnetic Spectrometer on the International Space Station: Precision Measurement of the Positron Fraction in Primary Cosmic Rays of 0.5350 GeV , 2013 .

[15]  R. Sagdeev,et al.  Electron and positron fluxes in primary cosmic rays measured with the alpha magnetic spectrometer on the international space station. , 2014, Physical review letters.

[16]  G. C. Barbarino,et al.  An anomalous positron abundance in cosmic rays with energies 1.5–100 GeV , 2009, Nature.

[17]  C. Shen Pulsars and very high-energy cosmic-ray electrons , 1970 .

[18]  A. K. Soma,et al.  Limits on light weakly interacting massive particles from the CDEX-1 experiment with ap-type point-contact germanium detector at the China Jinping Underground Laboratory , 2014, 1404.4946.

[19]  Q. Yuan,et al.  PAMELA/Fermi-LAT electron cosmic ray spectrum at ∼100 GeV: Implication for dark matter annihilation signal in accordance with the 130 GeV γ-ray line , 2012, 1206.4758.

[20]  J. Chiang,et al.  FERMI-LAT OBSERVATIONS OF THE DIFFUSE γ-RAY EMISSION: IMPLICATIONS FOR COSMIC RAYS AND THE INTERSTELLAR MEDIUM , 2012 .

[21]  J. Chiang,et al.  Dark matter constraints from observations of 25 Milky Way satellite galaxies with the Fermi Large Area Telescope , 2013, 1310.0828.

[22]  J. Read,et al.  Dark matter annihilation and decay in dwarf spheroidal galaxies: the classical and ultrafaint dSphs , 2015, 1504.02048.

[23]  Lei Feng,et al.  Search for gamma-ray emission from eight dwarf spheroidal galaxy candidates discovered in Year Two of Dark Energy Survey with Fermi-LAT data , 2015, 1511.09252.

[24]  Y. S. Tsai,et al.  A generic method to constrain the dark matter model parameters from Fermi observations of dwarf spheroids , 2012, 1212.3990.

[25]  E Aprile,et al.  Dark matter results from 225 live days of XENON100 data. , 2012, Physical review letters.

[26]  Matts Roos,et al.  MINUIT-a system for function minimization and analysis of the parameter errors and correlations , 1984 .

[27]  S. White,et al.  A Universal Density Profile from Hierarchical Clustering , 1996, astro-ph/9611107.

[28]  Tao Zhang,et al.  First dark matter search results from the PandaX-I experiment , 2014, Science China Physics, Mechanics & Astronomy.

[29]  Q. Yuan,et al.  Status of dark matter detection , 2013, 1409.4590.

[30]  A. Lewis,et al.  Cosmological parameters from CMB and other data: A Monte Carlo approach , 2002, astro-ph/0205436.

[31]  D. Hooper,et al.  New limits on dark matter annihilation from Alpha Magnetic Spectrometer cosmic ray positron data. , 2013, Physical review letters.

[32]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[33]  Y. S. Tsai,et al.  An updated analysis of Inert Higgs Doublet Model in light of the recent results from LUX, PLANCK, AMS-02 and LHC , 2013, 1310.0358.

[34]  Q. Yuan,et al.  Reconcile the AMS-02 positron fraction and Fermi-LAT/HESS total e(+/-) spectra by the primary electron spectrum hardening , 2013, 1304.2687.

[35]  T Glanzman,et al.  Constraining dark matter models from a combined analysis of Milky Way satellites with the Fermi Large Area Telescope. , 2011, Physical review letters.

[36]  Sergey E. Koposov,et al.  Indication of Gamma-Ray Emission from the Newly Discovered Dwarf Galaxy Reticulum II. , 2015, Physical review letters.

[37]  G. Bertone,et al.  Gamma-ray and radio tests of the e? excess from DM annihilations , 2008, 0811.3744.

[38]  B. Yanny,et al.  EIGHT ULTRA-FAINT GALAXY CANDIDATES DISCOVERED IN YEAR TWO OF THE DARK ENERGY SURVEY , 2015, 1508.03622.

[39]  L. Derome,et al.  A Markov Chain Monte Carlo technique to sample transport and source parameters of Galactic cosmic rays - II. Results for the diffusion model combining B/C and radioactive nuclei , 2010, 1001.0551.

[40]  T. Koi,et al.  Parameterization of γ, e +/- , and Neutrino Spectra Produced by p-p Interaction in Astronomical Environments , 2006, astro-ph/0605581.

[41]  J. Einasto О ПОСТРОЕНИИ СОСТАВНОй МОДЕЛИ ГАЛАКТИКИ И ОПРЕДЕЛЕНИИ СИСТЕМЫ ГАЛАКТИЧЕСКИХ ПАРАМЕТРОВ , 2016 .

[42]  T. Koi,et al.  Erratum: “Parameterization of γ, e±, and Neutrino Spectra Produced by p-p Interaction in Astronomical Environment” (ApJ, 647, 692 [2006]) , 2007 .

[43]  J. Chiang,et al.  CONSTRAINTS ON THE GALACTIC HALO DARK MATTER FROM FERMI-LAT DIFFUSE MEASUREMENTS , 2010, 1205.6474.

[44]  L. Maccione,et al.  Erratum: Cosmic-ray nuclei, antiprotons and gamma-rays in the galaxy: a new diffusion model , 2008, Journal of Cosmology and Astroparticle Physics.

[45]  J. Bahcall,et al.  Models for the Galaxy and the Predicted Star Counts , 1979 .

[46]  M. Cirelli Indirect searches for dark matter , 2012, 1202.1454.

[47]  D. Maurin,et al.  Cosmic Rays below Z = 30 in a Diffusion Model: New Constraints on Propagation Parameters , 2001 .

[48]  G. C. Barbarino,et al.  Observation of an anomalous positron abundance in the cosmic radiation , 2008, 0810.4995.

[49]  J. Chiang,et al.  Searching for Dark Matter Annihilation from Milky Way Dwarf Spheroidal Galaxies with Six Years of Fermi Large Area Telescope Data. , 2015, Physical review letters.

[50]  R. Trotta,et al.  A Markov chain Monte Carlo analysis of the CMSSM , 2006, hep-ph/0602028.

[51]  R. Cowsik Comment on M. Aguilar et. al. AMS Collaboration, Phys. Rev. Lett. 100, 141102 (2013) , 2013 .