An Air-Cooled Jacket Designed to Protect Unsteady Pressure Transducers at Elevated Temperatures in Gas Turbine Engines

Current unsteady pressure sensors have a limiting upper temperature range and with few exceptions cannot survive at the temperatures experienced in gas turbine aero-engines. This paper describes a design and development study of an air-cooled commercially available unsteady pressure transducer capable of operation at temperatures exceeding 900 °C. The research objective for this work is the following: To design a cooling adapter, using air as the cooling media, capable of protecting a standard unsteady pressure transducer, whose maximum operating temperature is around 250 °C. in a gas turbine engine environment where temperatures typically reach 800–l500 °C. In addition the provision of thermal protection must not adversely effect the measurement of unsteady pressure and the cooling adapter and transducer assembly must be small enough to access critical parts of the engine. Current transducer can operate at temperatures exceeding 250 °C; the purpose of this paper is to demonstrate the additional protection offered by air-cooling. The paper describes the validation experiments conducted for this design, the level of thermal protection achieved and the frequency response of the transducer/cooling jacket assembly.Copyright © 2002 by ASME