Frequency-domain order parameters for the burst and spike synchronization transitions of bursting neurons

We are interested in characterization of synchronization transitions of bursting neurons in the frequency domain. Instantaneous population firing rate (IPFR) $$R(t)$$R(t), which is directly obtained from the raster plot of neural spikes, is often used as a realistic collective quantity describing population activities in both the computational and the experimental neuroscience. For the case of spiking neurons, a realistic time-domain order parameter, based on $$R(t)$$R(t), was introduced in our recent work to characterize the spike synchronization transition. Unlike the case of spiking neurons, the IPFR $$R(t)$$R(t) of bursting neurons exhibits population behaviors with both the slow bursting and the fast spiking timescales. For our aim, we decompose the IPFR $$R(t)$$R(t) into the instantaneous population bursting rate $$R_b(t)$$Rb(t) (describing the bursting behavior) and the instantaneous population spike rate $$R_s(t)$$Rs(t) (describing the spiking behavior) via frequency filtering, and extend the realistic order parameter to the case of bursting neurons. Thus, we develop the frequency-domain bursting and spiking order parameters which are just the bursting and spiking “coherence factors” $$\beta _b$$βb and $$\beta _s$$βs of the bursting and spiking peaks in the power spectral densities of $$R_b$$Rb and $$R_s$$Rs (i.e., “signal to noise” ratio of the spectral peak height and its relative width). Through calculation of $$\beta _b$$βb and $$\beta _s$$βs, we obtain the bursting and spiking thresholds beyond which the burst and spike synchronizations break up, respectively. Consequently, it is shown in explicit examples that the frequency-domain bursting and spiking order parameters may be usefully used for characterization of the bursting and the spiking transitions, respectively.

[1]  Xiao-Jing Wang,et al.  What determines the frequency of fast network oscillations with irregular neural discharges? I. Synaptic dynamics and excitation-inhibition balance. , 2003, Journal of neurophysiology.

[2]  J. Hindmarsh,et al.  A model of neuronal bursting using three coupled first order differential equations , 1984, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[3]  Nicolas Brunel,et al.  Contributions of intrinsic membrane dynamics to fast network oscillations with irregular neuronal discharges. , 2005, Journal of neurophysiology.

[4]  Jorge L. Moiola,et al.  Characterization of Static bifurcations in the Frequency Domain , 2001, Int. J. Bifurc. Chaos.

[5]  Mingzhou Ding,et al.  Transitions to synchrony in coupled bursting neurons. , 2004, Physical review letters.

[6]  Xiaoming Liang,et al.  Phase synchronization of inhibitory bursting neurons induced by distributed time delays in chemical coupling. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[7]  Andrey Shilnikov,et al.  Methods of the Qualitative Theory for the Hindmarsh-rose Model: a Case Study - a Tutorial , 2008, Int. J. Bifurc. Chaos.

[8]  Peter Bloomfield,et al.  Fourier Analysis of Time Series: An Introduction , 1977 .

[9]  Lu Qi-Shao,et al.  Firing patterns and complete synchronization of coupled Hindmarsh-Rose neurons , 2005 .

[10]  Alexander L. Green Cortical Oscillations in Health and Disease. Oxford Univ. Press, New York (2010), June, Color plates, Hard cover, 448 pp, $74.95., ISBN: 978-0-19-534279-6 , 2010 .

[11]  Alexander B. Neiman,et al.  Coherence resonance , 2007, Scholarpedia.

[12]  Roger D. Traub,et al.  Comprar Cortical Oscillations in Health and Disease | Roger Traub | 9780195342796 | Oxford University Press , 2010 .

[13]  Iryna Omelchenko,et al.  Synchronization of slow-fast systems , 2010 .

[14]  Nancy Kopell,et al.  Synchronization in Networks of Excitatory and Inhibitory Neurons with Sparse, Random Connectivity , 2003, Neural Computation.

[15]  J. Hindmarsh,et al.  A model of a thalamic neuron , 1985, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[16]  Woochang Lim,et al.  Thermodynamic Order Parameters and Statistical-Mechanical Measures for Characterization of the Burst and Spike Synchronizations of Bursting Neurons , 2014, 1403.3994.

[17]  J. Hindmarsh,et al.  A model of the nerve impulse using two first-order differential equations , 1982, Nature.

[18]  Jayadev Misra,et al.  Phase Synchronization , 1991, Inf. Process. Lett..

[19]  S. R. Lopes,et al.  Phase synchronization of bursting neurons in clustered small-world networks. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[20]  David Golomb,et al.  Neuronal synchrony measures , 2007, Scholarpedia.

[21]  Jürgen Kurths,et al.  Phase synchronization in ensembles of bursting oscillators. , 2004, Physical review letters.

[22]  H. Haken,et al.  Stochastic resonance without external periodic force. , 1993, Physical review letters.

[23]  Carl van Vreeswijk,et al.  Patterns of Synchrony in Neural Networks with Spike Adaptation , 2001, Neural Computation.

[24]  Woochang Lim,et al.  Realistic thermodynamic and statistical-mechanical measures for neural synchronization , 2014, Journal of Neuroscience Methods.

[25]  Allison Carruth,et al.  Introduction to Focus , 2010 .

[26]  Nicolas Brunel,et al.  How Noise Affects the Synchronization Properties of Recurrent Networks of Inhibitory Neurons , 2006, Neural Computation.

[27]  A. Pérez-Villalba Rhythms of the Brain, G. Buzsáki. Oxford University Press, Madison Avenue, New York (2006), Price: GB £42.00, p. 448, ISBN: 0-19-530106-4 , 2008 .

[28]  Jonathan E. Rubin Burst synchronization , 2007, Scholarpedia.

[29]  Sang-Yoon Kim,et al.  Coupling-induced population synchronization in an excitatory population of subthreshold Izhikevich neurons , 2013, Cognitive Neurodynamics.

[30]  John Rinzel,et al.  A Formal Classification of Bursting Mechanisms in Excitable Systems , 1987 .

[31]  Nancy Kopell,et al.  Effects of Noisy Drive on Rhythms in Networks of Excitatory and Inhibitory Neurons , 2005, Neural Computation.

[32]  E L Lameu,et al.  Suppression of bursting synchronization in clustered scale-free (rich-club) neuronal networks. , 2012, Chaos.

[33]  Xiao-Jing Wang Neurophysiological and computational principles of cortical rhythms in cognition. , 2010, Physiological reviews.

[34]  W. Singer,et al.  Neural Synchrony in Brain Disorders: Relevance for Cognitive Dysfunctions and Pathophysiology , 2006, Neuron.

[35]  Chris Chatfield,et al.  The Analysis of Time Series: An Introduction , 1981 .

[36]  Gouhei Tanaka,et al.  Synchronization and propagation of bursts in networks of coupled map neurons. , 2006, Chaos.

[37]  Woochang Lim,et al.  Stochastic bursting synchronization in a population of subthreshold Izhikevich neurons , 2012 .

[38]  A. Longtin AUTONOMOUS STOCHASTIC RESONANCE IN BURSTING NEURONS , 1997 .

[39]  M. Kramer,et al.  Introduction to focus issue: rhythms and dynamic transitions in neurological disease: modeling, computation, and experiment. , 2013, Chaos.

[40]  Qishao Lu,et al.  Burst synchronization of electrically and chemically coupled map-based neurons , 2009 .

[41]  Jinzhi Lei,et al.  Burst synchronization transitions in a neuronal network of subnetworks. , 2011, Chaos.

[42]  Nicolas Brunel,et al.  Dynamics of Sparsely Connected Networks of Excitatory and Inhibitory Spiking Neurons , 2000, Journal of Computational Neuroscience.

[43]  Martin Hasler,et al.  Synchronization of bursting neurons: what matters in the network topology. , 2005, Physical review letters.

[44]  Shigeru Shinomoto,et al.  Kernel bandwidth optimization in spike rate estimation , 2009, Journal of Computational Neuroscience.

[45]  Jorge L. Moiola,et al.  Generalized Hopf bifurcation in a Frequency Domain Formulation , 2012, Int. J. Bifurc. Chaos.

[46]  Maxi San Miguel,et al.  STOCHASTIC EFFECTS IN PHYSICAL SYSTEMS , 2000 .

[47]  Qishao Lu,et al.  Hopf bifurcation and bursting synchronization in an excitable systems with chemical delayed coupling , 2012, Cognitive Neurodynamics.

[48]  Woochang Lim,et al.  Thermodynamic and Statistical-Mechanical Measures for Characterization of the Burst and Spike Synchronizations of Bursting Neurons , 2014 .

[49]  Bin Deng,et al.  Chaotic phase synchronization in small-world networks of bursting neurons. , 2011, Chaos.

[50]  P. Bressloff,et al.  Bursting: The genesis of rhythm in the nervous system , 2005 .

[51]  Qishao Lu,et al.  Equilibrium analysis and phase synchronization of two coupled HR neurons with gap junction , 2012, Cognitive Neurodynamics.

[52]  S. R. Lopes,et al.  Chaotic phase synchronization in scale-free networks of bursting neurons. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[53]  A. Izenman,et al.  Fourier Analysis of Time Series: An Introduction , 1977, IEEE Transactions on Systems, Man and Cybernetics.

[54]  Qishao Lu,et al.  Bursting synchronization dynamics of pancreatic β-cells with electrical and chemical coupling , 2012, Cognitive Neurodynamics.

[55]  Nicolas Brunel,et al.  Fast Global Oscillations in Networks of Integrate-and-Fire Neurons with Low Firing Rates , 1999, Neural Computation.

[56]  Xiao-Jing Wang Neural Oscillations , 2002 .

[57]  John Rinzel,et al.  Bursting oscillations in an excitable membrane model , 1985 .

[58]  Lynn Nadel,et al.  Encyclopedia of Cognitive Science , 2003 .

[59]  Simon R. Schultz,et al.  Signal-to-noise ratio in neuroscience , 2007, Scholarpedia.

[60]  J. Rinzel,et al.  Clustering in globally coupled inhibitory neurons , 1994 .

[61]  Thomas J. Palmeri,et al.  ENCYCLOPEDIA OF COGNITIVE SCIENCE , 2001 .

[62]  G. Buzsáki,et al.  Gamma Oscillation by Synaptic Inhibition in a Hippocampal Interneuronal Network Model , 1996, The Journal of Neuroscience.

[63]  Juergen Kurths,et al.  Multi-time-scale synchronization and information processing in bursting neuron networks , 2007 .

[64]  Jorge L. Moiola,et al.  Characterization of Dynamic bifurcations in the Frequency Domain , 2002, Int. J. Bifurc. Chaos.

[65]  Nicolas Brunel,et al.  Sparsely synchronized neuronal oscillations. , 2008, Chaos.

[66]  Olivier Bénichou,et al.  Instabilities and nonequilibrium structures IX , 2004 .