New materials for radiation hard semiconductor dectectors

On behalf of the RD50 collaboration Abstract We present a review of the current status of research into new semiconductor materials for use as particle tracking detectors in very high radiation environments. This work is carried out within the framework of the CERN RD50 collaboration, which is investigating detector technologies suitable for operation at the proposed Super-LHC facility (SLHC). Tracking detectors operating at the SLHC in this environment will have to be capable of withstanding radiation levels arising from a luminosity of 10 35 cm -2 s -1 which will present severe challenges to current tracking detector technologies. The "new materials" activity within RD50 is investigating the performance of various semiconductor materials that potentially offer radiation hard alternatives to silicon devices. The main contenders in this study are silicon carbide, gallium nitride and amorphous silicon. In this paper we review the current status of these materials, in terms of material quality, commercial availability, charge transport properties, and radiation hardness studies. Whilst these materials currently show considerable promise for use as radiation hard tracking detectors, their ultimate success will depend on the continued improvement of the availability of high quality material.

[1]  M. Bruzzi,et al.  Characterisation of epitaxial SiC Schottky barriers as particle detectors , 2003 .

[2]  G. Brandes,et al.  Growth and characterization of low defect GaN by hydride vapor phase epitaxy , 2002 .

[3]  W. Snoeys,et al.  GALLIUM ARSENIDE PIXEL DETECTORS , 1998 .

[4]  Analysis of trapping and detrapping in semi-insulating GaAs detectors , 1997, hep-ex/9701018.

[5]  S. R. Smith,et al.  Fermi level control and deep levels in semi-insulating 4H–SiC , 1999 .

[6]  P. Ciampolini,et al.  Developments for radiation hard silicon detectors by defect engineering—results by the CERN RD48 (ROSE) Collaboration , 2001 .

[7]  B. Schröder,et al.  Ellipsometric Studies of a-Si:H Film Growth, Density and Microstructure , 1995 .

[8]  M. Skowronski,et al.  An atomic force microscopy study of super-dislocation/micropipe complexes on the 6H-SiC(0 0 0 1) growth surface , 1997 .

[9]  K. Smith,et al.  Defect attributed variations of the photoconductivity and photoluminescence in the HVPE and MOCVD as-grown and irradiated GaN structures , 2005 .

[10]  R. C. Clarke,et al.  Growth of large SiC single crystals , 1993 .

[11]  V. Cindro,et al.  Effect of heavy proton and neutron irradiations on epitaxial 4H-SiC Schottky diodes ☆ , 2005 .

[12]  Giuseppe Bertuccio,et al.  Study of silicon carbide for X-ray detection and spectroscopy , 2003 .

[13]  W. J. Choyke,et al.  Anisotropy of the electron Hall mobility in 4H, 6H, and 15R silicon carbide , 1994 .

[14]  Subhasis Ghosh,et al.  Low field electron mobility in 6H-SiC , 2000 .

[15]  G. Verzellesi,et al.  Investigation on the charge collection properties of a 4H-SiC Schottky diode detector , 2002 .

[16]  Andrew Blue,et al.  Super-radiation hard particle tracking at the CERN SLHC , 2003 .

[17]  Jan Linnros,et al.  Recombination-enhanced extension of stacking faults in 4H-SiC p-i-n diodes under forward bias , 2002 .

[18]  Qing Yang,et al.  Observation of a hydrogenic donor in the luminescence of electron-irradiated GaN , 2003 .

[19]  N. Kishimoto,et al.  Radiation resistance of amorphous silicon in optoelectric properties under proton bombardment , 1998 .

[20]  Frank H. Ruddy,et al.  Development of a silicon carbide radiation detector , 1998 .

[21]  P. Muzykov,et al.  High resistivity measurement of SiC wafers using different techniques , 2003 .

[22]  C. Canali,et al.  Epitaxial silicon carbide charge particle detectors , 1999 .

[23]  M. Bruzzi Material engineering for the development of ultra-radiation hard semiconductor detectors , 2004 .

[24]  N. Wyrsch,et al.  Electronic Transport in Hydrogenated Microcrystalline Silicon: Similarities with Amorphous Silicon , 2000 .

[25]  R. Kass,et al.  Status of the R&D activity on diamond particle detectors , 2002 .

[26]  C. Lanzieri,et al.  Minimum ionizing and alpha particles detectors based on epitaxial semiconductor silicon carbide , 2004, IEEE Transactions on Nuclear Science.

[27]  S. Russo,et al.  Characterisation of silicon carbide detectors response to electron and photon irradiation , 2001 .

[28]  Michael Moll,et al.  Development of radiation hard sensors for very high luminosity colliders—CERN-RD50 project , 2003 .

[29]  I. Grzegory,et al.  Thermodynamical properties of III–V nitrides and crystal growth of GaN at high N2 pressure , 1997 .

[30]  Tangali S. Sudarshan,et al.  Nondestructive defect delineation in SiC wafers based on an optical stress technique , 2002 .

[31]  A. Winnacker,et al.  Micropipe healing in SiC wafers by liquid-phase epitaxy in Si–Ge melts , 2004 .

[32]  C. Lanzieri,et al.  Investigation of Ni/4H-SiC diodes as radiation detectors with low doped n-type 4H-SiC epilayers , 2003 .

[33]  Andreas Stintz,et al.  Localized excitons in InAs self-assembled quantum dots embedded in InGaAs/GaAs multi-quantum wells , 2003 .

[34]  S. Nakamura,et al.  Introduction to Nitride Semiconductor Blue Lasers and Light Emitting Diodes , 2000 .

[35]  J. Skowronski,et al.  Deep level transient spectroscopic and Hall effect investigation of the position of the vanadium acceptor level in 4H and 6H SiC , 1996 .

[36]  Paul J. Sellin,et al.  Recent advances in compound semiconductor radiation detectors , 2003 .

[37]  Tsunenobu Kimoto,et al.  Deep Defect Centers in Silicon Carbide Monitored with Deep Level Transient Spectroscopy , 1997 .

[38]  A. Lebedev Radiation Resistance of SiC and Nuclear-Radiation Detectors Based on SiC Films , 2004 .

[39]  M. Umeno,et al.  Impurity reduction and crystalline quality improvement due to isovalent doping (In) in GaAs epilayers on Si substrate by chemical beam epitaxy , 2000 .

[40]  Noise analysis of gallium arsenide pixel X-ray detectors coupled to ultra-low noise electronics , 2003 .

[41]  Richard L. Weisfield,et al.  Large area amorphous silicon x-ray imagers , 1996 .

[42]  R. Stein,et al.  Infrared spectra and electron spin resonance of vanadium deep level impurities in silicon carbide , 1990 .

[43]  H. Kuwamoto,et al.  Dislocation reduction in large-diameter LEC GaAs growth. I. Low gradient growth and indium doping , 1988 .

[44]  W. Cunningham,et al.  Space charge effects, carrier capture transient behaviour and α particle detection in semi-insulating GaN , 2003 .

[45]  K. Runge,et al.  Particle detectors based on semi-insulating silicon carbide , 1999 .

[46]  A. Houdayer,et al.  Radiation hardness of gallium nitride , 2002 .

[47]  A. Mainwood,et al.  Recent developments of diamond detectors for particles and UV radiation , 2000 .

[48]  M. Levine To be confirmed , 2008 .

[49]  Hoheisel,et al.  Hot electrons in amorphous silicon. , 1995, Physical review letters.

[50]  W. J. Moore,et al.  Donors in hydride-vapor-phase epitaxial GaN , 2002 .

[51]  P. Luukka Status of defect engineering activity of the RD50 collaboration , 2004 .

[52]  H. Lendenmann,et al.  Properties and origins of different stacking faults that cause degradation in SiC PiN diodes , 2004 .

[53]  Michael S. Shur,et al.  UV solid-state light emitters and detectors , 2004 .

[54]  N. Wyrsch,et al.  Recent Progress in the Interpretation of a-Si:H Transport Properties: Lifetimes, Mobilities and Mobility-Lifetime Products , 1995 .

[55]  J. Baruchel,et al.  Coherent X-ray imaging investigation of macrodefects and micropipes on SiC , 1999 .

[56]  Frank H. Ruddy,et al.  Demonstration of an SiC neutron detector for high-radiation environments , 1999 .

[57]  G. Bertuccio,et al.  Silicon carbide for high resolution X-ray detectors operating up to 100°C☆ , 2004 .

[58]  J. Kleider,et al.  Applications of the Modulated Photocurrent Technique to the Determination of Gap States Characteristics in Hydrogenated Amorphous Silicon , 1995 .

[59]  M. Rahman,et al.  Performance of irradiated bulk SiC detectors , 2003 .

[60]  G. Dunne,et al.  Physical vapor transport growth and properties of sic monocrystals of 4H polytype , 1997 .

[61]  J. Stuchlík,et al.  Ultrafast charge carrier recombination in a-Si:H and μc-Si:H , 1999 .

[62]  C. Canali,et al.  Deep levels in silicon carbide Schottky diodes , 2002 .

[63]  H. Matsunami,et al.  Growth and characterization of 4H–SiC in vertical hot-wall chemical vapor deposition , 2003 .

[64]  H. Misawa,et al.  Influence of buffer layer and growth temperature on the properties of an undoped GaN layer grown on sapphire substrate by metalorganic chemical vapor deposition , 2000 .

[65]  B. Schröder,et al.  METASTABLE DEFECTS IN HYDROGENATED AMORPHOUS SILICON (a-Si:H) PRODUCED BY ELECTRON IRRADIATION , 1989 .

[66]  Mara Bruzzi,et al.  High quality SiC applications in radiation dosimetry , 2001 .

[67]  Warren B. Jackson,et al.  Kinetics of Carrier-Induced Metastable defect Formation in Hydrogenated Amorphous Silicon , 1988 .

[68]  M. Bavdaz,et al.  X-ray response of epitaxial GaAs , 1999 .

[69]  Tao Wang,et al.  Semi-insulating GaN and its evaluation for α particle detection , 2003 .

[70]  P. Jarron,et al.  A new concept of monolithic silicon pixel detectors: hydrogenated amorphous silicon on ASIC , 2004 .

[71]  A. Winnacker,et al.  On the preparation of semi-insulating SiC bulk crystals by the PVT technique , 2001 .

[72]  A. Hallén,et al.  Optical and electrical properties of 4H-SiC irradiated with fast neutrons and high-energy heavy ions , 2004 .

[73]  A. Winnacker,et al.  Incorporation of boron and vanadium during PVT growth of 6H-SiC crystals , 2001 .

[74]  H. Henschel,et al.  Silicon carbide radiation detector for harsh environments , 2002 .

[75]  Pierre Gibart,et al.  Response of ultra-low dislocation density GaN photodetectors in the near- and vacuum-ultraviolet , 2004 .

[76]  Oliver Ambacher,et al.  Large Free-Standing GaN Substrates by Hydride Vapor Phase Epitaxy and Laser-Induced Liftoff , 1999 .

[77]  R. C. Clarke,et al.  Large diameter 6H-SiC for microwave device applications , 1994 .