A revision of NASA SeaDAS atmospheric correction algorithm over turbid waters with artificial Neural Networks estimated remote-sensing reflectance in the near-infrared

[1]  Z. Lee,et al.  Atmospheric correction over coastal waters with aerosol properties constrained by multi-pixel observations , 2021 .

[2]  Lianbo Hu,et al.  Iterative near-infrared atmospheric correction scheme for global coastal waters , 2021 .

[3]  B. Holben,et al.  Advances in the Ocean Color Component of the Aerosol Robotic Network (AERONET-OC) , 2021, Journal of Atmospheric and Oceanic Technology.

[4]  Menghua Wang,et al.  Extending satellite ocean color remote sensing to the near-blue ultraviolet bands , 2021 .

[5]  K. Stamnes,et al.  OC-SMART: A machine learning based data analysis platform for satellite ocean color sensors , 2021 .

[6]  Quinten Vanhellemont,et al.  Sensitivity analysis of the dark spectrum fitting atmospheric correction for metre- and decametre-scale satellite imagery using autonomous hyperspectral radiometry. , 2020, Optics express.

[7]  R. T. Mathers,et al.  Ranking environmental degradation trends of plastic marine debris based on physical properties and molecular structure , 2020, Nature Communications.

[8]  Menghua Wang,et al.  An empirical algorithm to seamlessly retrieve the concentration of suspended particulate matter from water color across ocean to turbid river mouths , 2019 .

[9]  Z. Ahmad,et al.  Multiband Atmospheric Correction Algorithm for Ocean Color Retrievals , 2019, Front. Earth Sci..

[10]  Z. Lee,et al.  Progressive scheme for blending empirical ocean color retrievals of absorption coefficient and chlorophyll concentration from open oceans to highly turbid waters. , 2019, Applied optics.

[11]  N. Pettorelli,et al.  Satellite remote sensing of ecosystem functions: opportunities, challenges and way forward , 2018 .

[12]  Emily Nicholson,et al.  The role of satellite remote sensing in structured ecosystem risk assessments. , 2018, The Science of the total environment.

[13]  R. Healy,et al.  Atmospheric correction for hyperspectral ocean color retrieval with application to the Hyperspectral Imager for the Coastal Ocean (HICO) , 2018 .

[14]  H. Ghedira,et al.  Improved atmospheric correction and chlorophyll-a remote sensing models for turbid waters in a dusty environment , 2017 .

[15]  Maycira Costa,et al.  Evaluation of MODIS-Aqua Atmospheric Correction and Chlorophyll Products of Western North American Coastal Waters Based on 13 Years of Data , 2017, Remote. Sens..

[16]  K. Stamnes,et al.  Atmospheric correction over coastal waters using multilayer neural networks , 2017 .

[17]  Ziauddin Ahmad,et al.  Revisiting short-wave-infrared (SWIR) bands for atmospheric correction in coastal waters. , 2017, Optics express.

[18]  Wouter Verhoef,et al.  An improved spectral optimization algorithm for atmospheric correction over turbid coastal waters: A case study from the Changjiang (Yangtze) estuary and the adjacent coast , 2017 .

[19]  Nikhil Ketkar,et al.  Introduction to Keras , 2017 .

[20]  Gong Lin,et al.  On the modeling of hyperspectral remote-sensing reflectance of high-sediment-load waters in the visible to shortwave-infrared domain. , 2016, Applied optics.

[21]  K. Ruddick,et al.  Advantages of high quality SWIR bands for ocean colour processing: Examples from Landsat-8 , 2015 .

[22]  Chuanmin Hu,et al.  Aquatic color radiometry remote sensing of coastal and inland waters: Challenges and recommendations for future satellite missions , 2015 .

[23]  Menghua Wang,et al.  Improved near-infrared ocean reflectance correction algorithm for satellite ocean color data processing. , 2014, Optics express.

[24]  Tinglu Zhang,et al.  Evaluation of the NIR-SWIR atmospheric correction algorithm for MODIS-Aqua over the Eastern China Seas , 2014 .

[25]  E. Boss,et al.  Retrieving marine inherent optical properties from satellites using temperature and salinity-dependent backscattering by seawater. , 2013, Optics express.

[26]  T. Kutser,et al.  Removing glint effects from field radiometry data measured in optically complex coastal and inland waters , 2013 .

[27]  Cédric Jamet,et al.  Evaluation of four atmospheric correction algorithms for MODIS-Aqua images over contrasted coastal waters , 2013 .

[28]  Bryan A. Franz,et al.  Chlorophyll aalgorithms for oligotrophic oceans: A novel approach based on three‐band reflectance difference , 2012 .

[29]  Gan Zhang,et al.  Occurrence and distribution of antibiotics in coastal water of the Bohai Bay, China: impacts of river discharge and aquaculture activities. , 2011, Environmental pollution.

[30]  K. Ruddick,et al.  Comparison of three SeaWiFS atmospheric correction algorithms for turbid waters using AERONET-OC measurements , 2011 .

[31]  François Steinmetz,et al.  Atmospheric correction in presence of sun glint: application to MERIS. , 2011, Optics express.

[32]  C. Mobley,et al.  Removal of surface-reflected light for the measurement of remote-sensing reflectance from an above-surface platform. , 2010, Optics express.

[33]  P Jeremy Werdell,et al.  Estimation of near-infrared water-leaving reflectance for satellite ocean color data processing. , 2010, Optics express.

[34]  Hui Feng,et al.  AERONET-OC: A Network for the Validation of Ocean Color Primary Products , 2009 .

[35]  K. Voss,et al.  Spectral optimization for constituent retrieval in Case 2 waters II: Validation study in the Chesapeake Bay , 2009 .

[36]  Atmospheric Correction for Remotely-Sensed Ocean-Colour Products , 2009 .

[37]  Menghua Wang,et al.  The NIR-SWIR combined atmospheric correction approach for MODIS ocean color data processing. , 2007, Optics express.

[38]  Menghua Wang,et al.  Detection of turbid waters and absorbing aerosols for the MODIS ocean color data processing , 2007 .

[39]  Menghua Wang Remote sensing of the ocean contributions from ultraviolet to near-infrared using the shortwave infrared bands: simulations. , 2007, Applied optics.

[40]  Roland Doerffer,et al.  Atmospheric correction algorithm for MERIS above case‐2 waters , 2007 .

[41]  Wei Shi,et al.  MODIS‐derived ocean color products along the China east coastal region , 2007 .

[42]  P. J. Werdell,et al.  A multi-sensor approach for the on-orbit validation of ocean color satellite data products , 2006 .

[43]  Menghua Wang,et al.  A refinement for the Rayleigh radiance computation with variation of the atmospheric pressure , 2005 .

[44]  M. Pinkerton,et al.  Modification to the atmospheric correction of SeaWiFS ocean colour images over turbid waters , 2005 .

[45]  H. Gordon,et al.  Simultaneous retrieval of oceanic and atmospheric parameters for ocean color imagery by spectral optimization: a validation , 2003 .

[46]  Menghua Wang The Rayleigh lookup tables for the SeaWiFS data processing: Accounting for the effects of ocean surface roughness , 2002 .

[47]  S. Bailey,et al.  Correction of Sun glint Contamination on the SeaWiFS Ocean and Atmosphere Products. , 2001, Applied optics.

[48]  K. Ruddick,et al.  Atmospheric correction of SeaWiFS imagery for turbid coastal and inland waters. , 2000, Applied optics.

[49]  C. Mobley,et al.  Hyperspectral remote sensing for shallow waters. 2. Deriving bottom depths and water properties by optimization. , 1999, Applied optics.

[50]  Gérard Thuillier,et al.  Observation of the solar spectral irradiance from 200 nm to 870 nm during the ATLAS 1 and ATLAS 2 missions by the SOLSPEC spectrometer , 1998 .

[51]  Menghua Wang,et al.  Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: a preliminary algorithm. , 1994, Applied optics.

[52]  J. W. Brown,et al.  Exact Rayleigh scattering calculations for use with the Nimbus-7 Coastal Zone Color Scanner. , 1988, Applied optics.