Second-order Møller-Plesset perturbation theory applied to extended systems. II. Structural and energetic properties.

Results for the lattice constants, atomization energies, and band gaps of typical semiconductors and insulators are presented for Hartree-Fock and second-order Moller-Plesset perturbation theory (MP2). We find that MP2 tends to undercorrelate weakly polarizable systems and overcorrelates strongly polarizable systems. As a result, lattice constants are overestimated for large gap systems and underestimated for small gap systems. The volume dependence of the MP2 correlation energy and the dependence of the MP2 band gaps on the static dielectric screening properties are discussed in detail. Moreover, the relationship between MP2 and the G(0)W(0) quasiparticle energies is elucidated and discussed. Finally, we demonstrate explicitly that the correlation energy diverges with decreasing k-point spacing for metals.

[1]  M. Plesset,et al.  Note on an Approximation Treatment for Many-Electron Systems , 1934 .

[2]  Louie,et al.  Electron correlation in semiconductors and insulators: Band gaps and quasiparticle energies. , 1986, Physical review. B, Condensed matter.

[3]  Georg Kresse,et al.  Self-consistent G W calculations for semiconductors and insulators , 2007 .

[4]  J. Paier,et al.  Screened hybrid density functionals applied to solids. , 2006, The Journal of chemical physics.

[5]  D. Freeman Coupled-cluster expansion applied to the electron gas: Inclusion of ring and exchange effects , 1977 .

[6]  J. Paier,et al.  Second-order Møller-Plesset perturbation theory applied to extended systems. I. Within the projector-augmented-wave formalism using a plane wave basis set. , 2009, The Journal of chemical physics.

[7]  Lorenz S. Cederbaum,et al.  New approach to the one-particle Green's function for finite Fermi systems , 1983 .

[8]  Cesare Pisani,et al.  Periodic local MP2 method for the study of electronic correlation in crystals: Theory and preliminary applications , 2008, J. Comput. Chem..

[9]  S. M. Sze,et al.  Physics of semiconductor devices , 1969 .

[10]  M. Gillan,et al.  Calculation of properties of crystalline lithium hydride using correlated wave function theory , 2009 .

[11]  Georg Kresse,et al.  Hybrid functionals including random phase approximation correlation and second-order screened exchange. , 2010, The Journal of chemical physics.

[12]  Rodney J. Bartlett,et al.  Second‐order many‐body perturbation‐theory calculations in extended systems , 1996 .

[13]  D. Hartree The Wave Mechanics of an Atom with a Non-Coulomb Central Field. Part I. Theory and Methods , 1928, Mathematical Proceedings of the Cambridge Philosophical Society.

[14]  Georg Kresse,et al.  Making the random phase approximation to electronic correlation accurate. , 2009, The Journal of chemical physics.

[15]  G. Kresse,et al.  Implementation and performance of the frequency-dependent GW method within the PAW framework , 2006 .

[16]  O. Madelung Semiconductors: Data Handbook , 2003 .

[17]  Jianmin Tao,et al.  Tests of a ladder of density functionals for bulk solids and surfaces , 2004 .

[18]  Mark S. Gordon,et al.  General atomic and molecular electronic structure system , 1993, J. Comput. Chem..

[19]  Georg Kresse,et al.  Assessing the quality of the random phase approximation for lattice constants and atomization energies of solids , 2010 .

[20]  Kwang S. Kim,et al.  Theory and applications of computational chemistry : the first forty years , 2005 .

[21]  Cesare Pisani,et al.  Beyond a Hartree–Fock description of crystalline solids: the case of lithium hydride , 2007 .

[22]  D. Freeman Coupled-cluster summation of the particle-particle ladder diagrams for the two-dimensional electron gas , 1983 .

[23]  R Dovesi,et al.  Local-MP2 electron correlation method for nonconducting crystals. , 2005, The Journal of chemical physics.

[24]  Suhai Electron correlation in extended systems: Fourth-order many-body perturbation theory and density-functional methods applied to an infinite chain of hydrogen atoms. , 1994, Physical review. B, Condensed matter.

[25]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[26]  Philippe Y. Ayala,et al.  Atomic orbital Laplace-transformed second-order Møller–Plesset theory for periodic systems , 2001 .

[27]  Michael Dolg,et al.  WAVE-FUNCTION-BASED CORRELATED AB INITIO CALCULATIONS ON CRYSTALLINE SOLIDS , 1999 .

[28]  Georg Kresse,et al.  Cohesive energy curves for noble gas solids calculated by adiabatic connection fluctuation-dissipation theory , 2008 .

[29]  S. Suhai,et al.  Quasiparticle energy-band structures in semiconducting polymers: Correlation effects on the band gap in polyacetylene , 1983 .

[30]  Trygve Helgaker,et al.  A priori calculation of molecular properties to chemical accuracy , 2004 .

[31]  V. Fock,et al.  Näherungsmethode zur Lösung des quantenmechanischen Mehrkörperproblems , 1930 .

[32]  L. Hedin NEW METHOD FOR CALCULATING THE ONE-PARTICLE GREEN'S FUNCTION WITH APPLICATION TO THE ELECTRON-GAS PROBLEM , 1965 .

[33]  L. Reining,et al.  The self-energy beyond GW: local and nonlocal vertex corrections. , 2009, The Journal of chemical physics.

[34]  So Hirata,et al.  Coupled-cluster singles and doubles for extended systems. , 2004, The Journal of chemical physics.

[35]  Walter Kohn,et al.  Nobel Lecture: Electronic structure of matter-wave functions and density functionals , 1999 .

[36]  M. Gillan,et al.  Extension of molecular electronic structure methods to the solid state: computation of the cohesive energy of lithium hydride. , 2006, Physical chemistry chemical physics : PCCP.

[37]  M. Gell-Mann,et al.  Correlation Energy of an Electron Gas at High Density , 1957 .