The secant line variety to the varieties of reducible plane curves

[1]  Hirotachi Abo Varieties of completely decomposable forms and their secants , 2014 .

[2]  Megan Patnott The h-vectors of arithmetically Gorenstein sets of points on a general sextic surface in P3 , 2014 .

[3]  A. Geramita,et al.  Star configurations in Pn , 2013 .

[4]  Jeaman Ahn,et al.  THE MINIMAL FREE RESOLUTION OF A STAR-CONFIGURATION IN ?nAND THE WEAK LEFSCHETZ PROPERTY , 2012 .

[5]  E. Carlini,et al.  STAR CONFIGURATION POINTS AND GENERIC PLANE CURVES , 2010, 1001.4504.

[6]  Susan M. Cooper,et al.  Combinatorial bounds on Hilbert functions of fat points in projective space , 2009, 0912.1915.

[7]  L. Chiantini,et al.  Rank 2 arithmetically Cohen‐Macaulay bundles on a general quintic surface , 2009 .

[8]  A. Bernardi,et al.  On the variety parameterizing completely decomposable polynomials , 2009, 0903.2757.

[9]  L. Chiantini,et al.  Complete intersection Points on General Surfaces in P3 , 2008, 0811.2233.

[10]  L. Chiantini,et al.  Complete intersections on general hypersurfaces , 2008, 0801.4288.

[11]  C. Bocci,et al.  Comparing powers and symbolic powers of ideals , 2007, 0706.3707.

[12]  P. Vermeire Regularity and normality of the secant variety to a projective curve , 2006, math/0610081.

[13]  Chris Peterson,et al.  Induction for secant varieties of Segre varieties , 2006, math/0607191.

[14]  A. Geramita,et al.  On the first infinitesimal neighborhood of a linear configuration of points in P2 , 2006 .

[15]  S. Sullivant,et al.  Combinatorial secant varieties , 2005, math/0506223.

[16]  J. Sidman,et al.  Secant varieties of toric varieties , 2005, math/0502344.

[17]  A. Geramita,et al.  Secant Varieties of Grasmann Varieties , 2002, math/0208166.

[18]  C. D. Boor,et al.  Polynomial interpolation in several variables , 1994 .

[19]  Volker Strassen,et al.  Algebraic Complexity Theory , 1991, Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity.

[20]  Alessandro Terracini,et al.  Sulle vk per cui la varietÀ degli sh (h + 1) seganti ha dimensione minore delĽordinario , 1911 .

[21]  M. S. Ravi Determinantal equations for secant varieties of curves , 1994 .

[22]  Carmelo Mammana Sulla varietà delle curve algebriche piane spezzate in un dato modo , 1954 .