Stochastic inversion for scaling geology
暂无分享,去创建一个
[1] Albert Tarantola,et al. Three‐dimensional inversion without blocks , 1984 .
[2] O. G. Jensen,et al. Gaussian scaling noise model of seismic reflection sequences: Evidence from well logs , 1990 .
[3] D. Jackson. The use of a priori data to resolve non‐uniqueness in linear inversion , 1979 .
[4] A. T. Walden,et al. The nature of the non-Gaussianity of primary reflection coefficients and its significance for deconvolution , 1986 .
[5] Benoit B. Mandelbrot,et al. Fractal Geometry of Nature , 1984 .
[6] A. Spector,et al. STATISTICAL MODELS FOR INTERPRETING AEROMAGNETIC DATA , 1970 .
[7] G. Pavlis,et al. Convolutional quelling in seismic tomography , 1989 .
[8] David Crossley,et al. Fractal Linear Models of Geophysical Processes , 1991 .
[9] A. Tarantola. Inverse problem theory : methods for data fitting and model parameter estimation , 1987 .
[10] E. Robinson. PREDICTIVE DECOMPOSITION OF SEISMIC TRACES , 1957 .
[11] A. Duijndam. BAYESIAN ESTIMATION IN SEISMIC INVERSION. PART I: PRINCIPLES1 , 1988 .
[12] George E. Backus,et al. Bayesian inference in geomagnetism , 1988 .
[13] R. Nowack,et al. A note on the calculation of covariance and resolution , 1988 .
[14] G. Backus,et al. Uniqueness in the inversion of inaccurate gross Earth data , 1970, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.
[15] J. Montagner,et al. Vectorial tomography—II. Application to the Indian Ocean , 1988 .
[16] R. Parker. A statistical theory of seamount magnetism , 1988 .
[17] K. Aki,et al. The fractal nature of the inhomogeneities in the lithosphere evidenced from seismic wave scattering , 1985 .
[18] D. Marquardt. An Algorithm for Least-Squares Estimation of Nonlinear Parameters , 1963 .
[19] A. Tarantola,et al. Inversion of field data in fault tectonics to obtain the regional stress — I. Single phase fault populations: a new method of computing the stress tensor , 1982 .
[20] R. Parker,et al. Occam's inversion; a practical algorithm for generating smooth models from electromagnetic sounding data , 1987 .
[21] Joel Franklin,et al. Well-posed stochastic extensions of ill-posed linear problems☆ , 1970 .
[22] Robert L. Parker,et al. Efficient modeling of the Earth's magnetic field with harmonic splines , 1982 .
[23] Jeremy Bloxham,et al. Simultaneous stochastic inversion for geomagnetic main field and secular variation: 1. A large‐scale inverse problem , 1987 .
[24] R. Wiggins,et al. The general linear inverse problem - Implication of surface waves and free oscillations for earth structure. , 1972 .
[25] D. Oldenburg,et al. THE INTERPRETATION OF DIRECT CURRENT RESISTIVITY MEASUREMENTS , 1978 .
[26] T. Hewett. Fractal Distributions of Reservoir Heterogeneity and Their Influence on Fluid Transport , 1986 .
[27] O. Koefoed,et al. Geosounding Principles: Resistivity Sounding Measurements , 1980 .
[28] Jeremy Bloxham,et al. Geomagnetic field analysis—III. Magnetic fields on the core—mantle boundary , 1985 .
[29] A. Tarantola,et al. Generalized Nonlinear Inverse Problems Solved Using the Least Squares Criterion (Paper 1R1855) , 1982 .
[30] G. Backus,et al. Inference from Inadequate and Inaccurate Data, III. , 1970, Proceedings of the National Academy of Sciences of the United States of America.
[31] R. Bayer,et al. Density and magnetic tomography of the upper continental crust: application to a thrust area of the French Massif Central , 1984 .
[32] A. Duijndam. BAYESIAN ESTIMATION IN SEISMIC INVERSION. PART II: UNCERTAINTY ANALYSIS1 , 1988 .
[33] Oliver G. Jensen,et al. Scaling geology and seismic deconvolution , 1989 .
[34] Oliver G. Jensen,et al. Joseph geology and seismic deconvolution , 1988 .
[35] Andrew T. Walden,et al. An investigation of the spectral properties of primary reflection coefficients , 1985 .
[36] E. R. Kanasewich,et al. Time sequence analysis in geophysics , 1973 .