Thermal activation of excitons in asymmetric InAs dots-in-a-well InxGa1−xAs∕GaAs structures

Photoluminescence, its temperature dependence, and photoluminescence excitation spectra of InAs quantum dots embedded in asymmetric InxGa1−xAs∕GaAs quantum wells [dots in a well (DWELL)] have been investigated as a function of the indium content x (x=0.10–0.25) in the capping InxGa1−xAs layer. The asymmetric DWELL structures were created with the aim to investigate the influence of different barrier values at the quantum dot (QD)/quantum well interface on the photoluminescence thermal quenching process. The set of rate equations for the two stage model for the capture and thermal escape of excitons in QDs are solved to analyze the nature of thermal activation energies for the QD photoluminescence quenching process. The two stage model for exciton thermal activation was confirmed experimentally in the investigated QD structures as well. The localization of nonradiative defects in InAs∕InGaAs DWELL structures is discussed on the base of comparison of theoretical and numerically calculated (fitting) results.

[1]  L. Seravalli,et al.  Defect passivation in strain engineered InAs/(InGa)As quantum dots , 2005 .

[2]  S. Ostapenko,et al.  Ground and excited state energy trend in InAs/InGaAs quantum dots monitored by scanning photoluminescence spectroscopy , 2005 .

[3]  S. Franchi,et al.  Quantum dot strain engineering for light emission at 1.3, 1.4 and 1.5μm , 2005 .

[4]  P. G. Eliseev,et al.  Photoluminescence mapping on InAs/InGaAs quantum dot structures , 2005 .

[5]  Andreas Stintz,et al.  Theoretical modeling and experimental characterization of InAs∕InGaAs quantum dots in a well detector , 2004 .

[6]  S. Ostapenko,et al.  Scanning photoluminescence spectroscopy in InAs∕InGaAs quantum-dot structures , 2004 .

[7]  P. G. Eliseev,et al.  Temperature dependence of the photoluminescence emission from InAs quantum dots in a strained Ga0.85In0.15As quantum well , 2004 .

[8]  Dae Kon Oh,et al.  Manipulation of the structural and optical properties of InAs quantum dots by using various InGaAs structures , 2003 .

[9]  R. Murray,et al.  Temperature and excitation density dependence of the photoluminescence from annealed InAs/GaAs quantum dots , 2003 .

[10]  Andreas Stintz,et al.  Thermal ionisation of ground and multiply excited states in InAs quantum dots embedded into InGaAs/GaAs MQW , 2003 .

[11]  S. Franchi,et al.  The effect of strain on tuning of light emission energy of InAs/InGaAs quantum-dot nanostructures , 2003 .

[12]  M. S. Skolnick,et al.  Optimizing the growth of 1.3 μm InAs/InGaAs dots-in-a-well structure , 2003 .

[13]  Andreas Stintz,et al.  Localized excitons in InAs self-assembled quantum dots embedded in InGaAs/GaAs multi-quantum wells , 2003 .

[14]  Yasuhiko Arakawa,et al.  Over 1.5 μm light emission from InAs quantum dots embedded in InGaAs strain-reducing layer grown by metalorganic chemical vapor deposition , 2001 .

[15]  G. Medeiros-Ribeiro,et al.  Luminescence quenching in InAs quantum dots , 2001 .

[16]  A. R. Kovsh,et al.  Electronic Properties of InAs/GaAs Quantum Dots Covered by an InxGa1–xAs Quantum Well , 2001 .

[17]  Mikhail V. Maximov,et al.  Tuning quantum dot properties by activated phase separation of an InGa(Al)As alloy grown on InAs stressors , 2000 .

[18]  S. Sanguinetti,et al.  Carrier transfer and photoluminescence quenching in InAs/GaAs multilayer quantum dots , 2000 .

[19]  Andreas Stintz,et al.  Characterization of InAs quantum dots in strained InxGa1-xAs quantum wells , 2000 .

[20]  Wolfgang Werner Langbein,et al.  Time-resolved optical characterization of InAs/InGaAs quantum dots emitting at 1.3 μm , 2000 .

[21]  Huiyun Liu,et al.  Effect of In-mole-fraction in InGaAs overgrowth layer on self-assembled InAs/GaAs quantum dots , 2000 .

[22]  G. Park,et al.  Continuous-wave low-threshold performance of 1.3-/spl mu/m InGaAs-GaAs quantum-dot lasers , 2000, IEEE Journal of Selected Topics in Quantum Electronics.

[23]  Mohamed Henini,et al.  Carrier thermal escape and retrapping in self-assembled quantum dots , 1999 .

[24]  Jin Zou,et al.  Inhibited carrier transfer in ensembles of isolated quantum dots , 1999 .

[25]  Andreas Stintz,et al.  Extremely low room-temperature threshold current density diode lasers using InAs dots in In/sub 0.15/Ga/sub 0.85/As quantum well , 1999 .

[26]  A. R. Kovsh,et al.  InAs/InGaAs quantum dot structures on GaAs substrates emitting at 1.3 μm , 1999 .

[27]  Nikolai N. Ledentsov,et al.  Quantum dot heterostructures , 1999 .

[28]  Ray-Ming Lin,et al.  TEMPERATURE DEPENDENCE OF PHOTOLUMINESCENCE SPECTRA IN INAS/GAAS QUANTUM DOT SUPERLATTICES WITH LARGE THICKNESSES , 1997 .

[29]  M. Sugawara,et al.  High photoluminescence efficiency of InGaAs/GaAs quantum dots self-formed by atomic layer epitaxy technique , 1997 .

[30]  Mario Guzzi,et al.  Thermally activated carrier transfer and luminescence line shape in self‐organized InAs quantum dots , 1996 .

[31]  P. P. González-Borrero,et al.  Exciton localization and temperature stability in self‐organized InAs quantum dots , 1996 .