11C-AC-5216: A Novel PET Ligand for Peripheral Benzodiazepine Receptors in the Primate Brain

Developing a PET ligand for imaging of the peripheral benzodiazepine receptor (PBR; Translocator Protein [18 kDa] TSPO) is of great importance for studying its role in glial cells in the injured brain and in neurodegenerative disorders, such as Alzheimer's disease. The aim of this study was to synthesize and evaluate N-benzyl-N-ethyl-2-(7-11C-methyl-8-oxo-2-phenyl-7,8-dihydro-9H-purin-9-yl)acetamide (11C-AC-5216) as a PET ligand for imaging PBR in the primate brain. Methods: AC-5216 and its desmethyl precursor (compound 1) were synthesized starting from commercially available compounds. The radiosynthesis of 11C-AC-5216 was performed through the reaction of compound 1 with 11C-CH3I in the presence of NaH. The in vivo brain regional distribution was determined in mice (dissection) and a monkey (PET). Results: 11C-AC-5216 (800–1,230 MBq; n = 25) was obtained with a radiochemical purity of 98% and a specific activity of 85–130 GBq/μmol at the end of synthesis. After injection of 11C-AC-5216 into mice, a high accumulation of radioactivity was found in the lungs, heart, adrenal glands, and other PBR-rich organs. In the mouse brain, high radioactivity was observed in the olfactory bulb and cerebellum. Radioactivity in these regions was inhibited by nonradioactive AC-5216 or PK11195 but was not decreased by central benzodiazepine receptor–selective flumazenil and Ro15-4513. A PET study of the monkey brain determined that 11C-AC-5216 had a relatively high uptake in the occipital cortex, a rich PBR-dense area in the primate brain. Pretreatment with nonradioactive AC-5216 and PK11195 reduced the radioactivity of 11C-AC-5216 in the occipital cortex significantly, suggesting its high specific binding with PBR in the brain. Metabolite analysis demonstrated that 11C-AC-5216 was stable in vivo in the mouse brain, although it was metabolized in the plasma of mice and the monkey. Conclusion: 11C-AC-5216 is a promising PET ligand for imaging PBR in rodent and primate brains.

[1]  C. Braestrup,et al.  High densities of benzodiazepine receptors in human cortical areas , 1977, Nature.

[2]  André Syrota,et al.  Synthesis of N‐(11C) methyl, N‐(methyl‐1 propyl), (chloro‐2 phenyl)‐1 isoquinoleine carboxamide‐3 (PK 11195): A new ligand for peripheral benzodiazepine receptors , 1984 .

[3]  R. Anholt,et al.  Peripheral-type benzodiazepine receptors: autoradiographic localization in whole-body sections of neonatal rats. , 1985, The Journal of pharmacology and experimental therapeutics.

[4]  C. Carter,et al.  Peripheral type benzodiazepine binding sites are a sensitive indirect index of neuronal damage , 1987, Brain Research.

[5]  O. Inoue,et al.  Synthesis and evaluation of11C-PK 11195 forin vivo study of peripheral-type benzodiazepine receptors using position emission tomography , 1989 .

[6]  R. Butterworth,et al.  Peripheral benzodiazepine binding sites in Alzheimer's disease frontal and temporal cortex , 1991, Neurobiology of Aging.

[7]  C Crouzel,et al.  PET study of carbon-11-PK 11195 binding to peripheral type benzodiazepine sites in glioblastoma: a case report. , 1991, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[8]  M. Petit-Taboué,et al.  Brain kinetics and specific binding of [11C]PK 11195 to omega 3 sites in baboons: positron emission tomography study. , 1991, European journal of pharmacology.

[9]  D. Schober,et al.  Peripheral benzodiazepine receptors are colocalized with activated microglia following transient global forebrain ischemia in the rat , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[10]  S. Chaki,et al.  Binding characteristics of [3H]DAA1106, a novel and selective ligand for peripheral benzodiazepine receptors. , 1999, European journal of pharmacology.

[11]  N. Volkow,et al.  PET and drug research and development. , 1999, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[12]  Abraham Weizman,et al.  Enigma of the peripheral benzodiazepine receptor. , 1999, Pharmacological reviews.

[13]  M. Gazouli,et al.  Peripheral benzodiazepine receptor binding properties and effects on steroid synthesis of two new phenoxyphenyl‐acetamide derivatives, DAA1097 and DAA1106 , 2001 .

[14]  Eric Achten,et al.  Semiquantification of the peripheral-type benzodiazepine ligand [11C]PK11195 in normal human brain and application in multiple sclerosis patients. , 2002, Acta neurologica Belgica.

[15]  Eric Achten,et al.  Assessment of Neuroinflammation and Microglial Activation in Alzheimer’s Disease with Radiolabelled PK11195 and Single Photon Emission Computed Tomography , 2003, European Neurology.

[16]  V. Papadopoulos,et al.  Peripheral-type benzodiazepine receptor: structure and function of a cholesterol-binding protein in steroid and bile acid biosynthesis , 2003, Steroids.

[17]  Tetsuya Suhara,et al.  [(11)C]DAA1106: radiosynthesis and in vivo binding to peripheral benzodiazepine receptors in mouse brain. , 2003, Nuclear medicine and biology.

[18]  Tetsuya Suhara,et al.  Development of a new radioligand, N-(5-fluoro-2-phenoxyphenyl)-N-(2-[18F]fluoroethyl-5-methoxybenzyl)acetamide, for pet imaging of peripheral benzodiazepine receptor in primate brain. , 2004, Journal of medicinal chemistry.

[19]  Yuji Nagai,et al.  Novel peripheral benzodiazepine receptor ligand [11C]DAA1106 for PET: An imaging tool for glial cells in the brain , 2004, Synapse.

[20]  S. Kurumiya,et al.  Antianxiety and antidepressant‐like effects of AC‐5216, a novel mitochondrial benzodiazepine receptor ligand , 2004, British journal of pharmacology.

[21]  Ronald Boellaard,et al.  Development of a Tracer Kinetic Plasma Input Model for (R)-[11C]PK11195 Brain Studies , 2005, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[22]  Richard B. Banati,et al.  Ligands for peripheral benzodiazepine binding sites in glial cells , 2005, Brain Research Reviews.

[23]  Blood flow dependence of the intratumoral distribution of peripheral benzodiazepine receptor binding in intact mouse fibrosarcoma. , 2006, Nuclear medicine and biology.

[24]  D. Nutt,et al.  Translocator protein (18kDa): new nomenclature for the peripheral-type benzodiazepine receptor based on its structure and molecular function. , 2006, Trends in pharmacological sciences.

[25]  V. Papadopoulos,et al.  Peripheral-type benzodiazepine receptor in neurosteroid biosynthesis, neuropathology and neurological disorders , 2006, Neuroscience.

[26]  M. Imaizumi,et al.  PET imaging with [ 11 C ] PBR 28 can localize and quantify upregulated peripheral benzodiazepine receptors associated with cerebral ischemia in rat , 2006 .

[27]  Ryuji Nakao,et al.  Quantitative analyses of 18F-FEDAA1106 binding to peripheral benzodiazepine receptors in living human brain. , 2006, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[28]  Robert B. Innis,et al.  PET imaging with [11C]PBR28 can localize and quantify upregulated peripheral benzodiazepine receptors associated with cerebral ischemia in rat , 2007, Neuroscience Letters.

[29]  Ming-Rong Zhang,et al.  N-(5-Fluoro-2-phenoxyphenyl)-N-(2-[(131)I]iodo-5-me thoxybenzyl)acetamide: a potent iodinated radioligand for the peripheral-type benzodiazepine receptor in brain. , 2007, Journal of medicinal chemistry.

[30]  Ryuji Nakao,et al.  Quantitative Analysis for Estimating Binding Potential of the Peripheral Benzodiazepine Receptor with [11C]DAA1106 , 2007, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[31]  Philippe Hantraye,et al.  11C-DPA-713: A Novel Peripheral Benzodiazepine Receptor PET Ligand for In Vivo Imaging of Neuroinflammation , 2007, Journal of Nuclear Medicine.