Application of Entropy Theory in Hydrologic Analysis and Simulation

Application of Entropy Theory in Hydrologic Analysis and Simulation. (May 2012) Zengchao Hao, B.S., China Agricultural University, China; M.S., Tsinghua University, China Chair of Advisory Committee: Dr. Vijay P. Singh The dissertation focuses on the application of entropy theory in hydrologic analysis and simulation, namely, rainfall analysis, streamflow simulation and drought analysis. The extreme value distribution has been employed for modeling extreme rainfall values. Based on the analysis of changes in the frequency distribution of annual rainfall maxima in Texas with the changes in duration, climate zone and distance from the sea, an entropy-based distribution is proposed as an alternative distribution for modeling extreme rainfall values. The performance of the entropy based distribution is validated by comparing with the commonly used generalized extreme value (GEV) distribution based on synthetic and observed data and is shown to be preferable for extreme rainfall values with high skewness. An entropy based method is proposed for single-site monthly streamflow simulation. An entropy-copula method is also proposed to simplify the entropy based method and preserve the inter-annual dependence of monthly streamflow. Both methods

[1]  J. Stedinger,et al.  Water resource systems planning and analysis , 1981 .

[2]  N. Balakrishnan,et al.  Continuous Bivariate Distributions , 2009 .

[3]  P. Friederichs,et al.  Multivariate non-normally distributed random variables in climate research - introduction to the copula approach , 2008 .

[4]  M. E. Johnson,et al.  Multivariate Statistical Simulation , 1988 .

[5]  J. Carr The climate and physiography of Texas. , 1967 .

[6]  Vijay P. Singh,et al.  Single‐site monthly streamflow simulation using entropy theory , 2011 .

[7]  V. Cvetkovic,et al.  Significance of higher moments for complete characterization of the travel time probability density function in heterogeneous porous media using the maximum entropy principle , 2010 .

[8]  R. Nelsen An Introduction to Copulas , 1998 .

[9]  Younes Alila,et al.  A model of rapid preferential hillslope runoff contributions to peak flow generation in a temperate rain forest watershed , 2004 .

[10]  Jose D. Salas,et al.  Stepwise Disaggregation Scheme for Synthetic Hydrology , 1992 .

[11]  J. N. Kapur,et al.  Entropy optimization principles with applications , 1992 .

[12]  Jenq-Tzong Shiau,et al.  Return period of bivariate distributed extreme hydrological events , 2003 .

[13]  Balaji Rajagopalan,et al.  Modified K-NN Model for Stochastic Streamflow Simulation , 2006 .

[14]  A. Favre,et al.  Metaelliptical copulas and their use in frequency analysis of multivariate hydrological data , 2007 .

[15]  Juan B. Valdés,et al.  Bivariate Drought Recurrence Analysis Using Tree Ring Reconstructions , 2003 .

[16]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[17]  L. Mead,et al.  Maximum entropy in the problem of moments , 1984 .

[18]  Jose D. Salas,et al.  Gamma‐Autoregressive Models for Stream‐Flow Simulation , 1990 .

[19]  J. ...,et al.  Applied modeling of hydrologic time series , 1980 .

[20]  A. I. McLeod,et al.  Preservation of the rescaled adjusted range: 2. Simulation studies using Box‐Jenkins Models , 1978 .

[21]  Demetris Koutsoyiannis,et al.  Simple Disaggregation by Accurate Adjusting Procedures , 1996 .

[22]  James E. Smith Moment Methods for Decision Analysis , 1993 .

[23]  Carlo De Michele,et al.  Extremes in Nature : an approach using Copulas , 2007 .

[24]  Taesam Lee,et al.  Nonparametric Simulation of Single-Site Seasonal Streamflows , 2010 .

[25]  Taesam Lee,et al.  An enhanced nonparametric streamflow disaggregation model with genetic algorithm , 2010 .

[26]  H. Joe Multivariate models and dependence concepts , 1998 .

[27]  Z. Hao,et al.  Entropy‐copula method for single‐site monthly streamflow simulation , 2012 .

[28]  J. Valdes,et al.  Nonparametric Approach for Bivariate Drought Characterization Using Palmer Drought Index , 2006 .

[29]  Upmanu Lall,et al.  Recent advances in nonparametric function estimation: Hydrologic applications , 1995 .

[30]  J. D. Tubbs,et al.  A bivariate gamma probability distribution with application to gust modeling. [for the ascent flight of the space shuttle] , 1982 .

[31]  J. N. Kapur Maximum-entropy models in science and engineering , 1992 .

[32]  R. Valencia,et al.  Disaggregation processes in stochastic hydrology , 1973 .

[33]  S. Nadarajah A bivariate pareto model for drought , 2009 .

[34]  Ashish Sharma,et al.  A nonparametric approach for representing interannual dependence in monthly streamflow sequences , 2002 .

[35]  Vijay P. Singh,et al.  Entropy-Based Parameter Estimation In Hydrology , 1998 .

[36]  M. Schaefer Regional analyses of precipitation annual maxima in Washington State , 1990 .

[37]  Reza Modarres,et al.  Copula‐based drought severity‐duration‐frequency analysis in Iran , 2009 .

[38]  Jery R. Stedinger,et al.  The value of stochastic streamflow models in overyear reservoir design applications , 1988 .

[39]  Taesam Lee,et al.  Copula-based stochastic simulation of hydrological data applied to Nile River flows , 2011 .

[40]  Edward A. McBean,et al.  Hydrologic Generating Model Selection , 1979 .

[41]  R. Vogel,et al.  The moving blocks bootstrap versus parametric time series models , 1996 .

[42]  H. Akaike A new look at the statistical model identification , 1974 .

[43]  Ronny Berndtsson,et al.  Advances in Data-Based Approaches for Hydrologic Modeling and Forecasting , 2010 .

[44]  Y. Alila A hierarchical approach for the regionalization of precipitation annual maxima in Canada , 1999 .

[45]  Jery R. Stedinger,et al.  A condensed disaggregation model for incorporating parameter uncertainty into monthly reservoir simulations , 1985 .

[46]  Bruno Rémillard,et al.  Goodness‐of‐fit Procedures for Copula Models Based on the Probability Integral Transformation , 2006 .

[47]  F. Francés,et al.  Estimation of high return period flood quantiles using additional non-systematic information with upper bounded statistical models , 2010 .

[48]  Martin T. Wells,et al.  Model Selection and Semiparametric Inference for Bivariate Failure-Time Data , 2000 .

[49]  C. E. SHANNON,et al.  A mathematical theory of communication , 1948, MOCO.

[50]  Taha B. M. J. Ouarda,et al.  The Gumbel mixed model for flood frequency analysis , 1999 .

[51]  W. L. Lane,et al.  Applied Modeling of Hydrologic Time Series , 1997 .

[52]  J. Stedinger Frequency analysis of extreme events , 1993 .

[53]  E. Jaynes Information Theory and Statistical Mechanics , 1957 .

[54]  T. McKee,et al.  THE RELATIONSHIP OF DROUGHT FREQUENCY AND DURATION TO TIME SCALES , 1993 .

[55]  Pravin K. Trivedi,et al.  Copula Modeling: An Introduction for Practitioners , 2007 .

[56]  Upmanu Lall,et al.  Streamflow simulation: A nonparametric approach , 1997 .

[57]  R. Clemen,et al.  Correlations and Copulas for Decision and Risk Analysis , 1999 .

[58]  R. Riggio,et al.  Texas drought: its recent history. , 1987 .

[59]  Richard A. Highfield,et al.  Calculation of maximum entropy distributions and approximation of marginalposterior distributions , 1988 .

[60]  Floyd A. Huff,et al.  RAINFALL FREQUENCY ATLAS OF THE MIDWEST , 1992 .

[61]  Comment upon multivariate synthetic hydrology , 1975 .

[62]  Claude E. Shannon,et al.  A Mathematical Theory of Communications , 1948 .

[63]  Upmanu Lall,et al.  A Nearest Neighbor Bootstrap For Resampling Hydrologic Time Series , 1996 .

[64]  V. V. Srinivas,et al.  Hybrid moving block bootstrap for stochastic simulation of multi-site multi-season streamflows , 2005 .

[65]  N. Matalas Mathematical assessment of synthetic hydrology , 1967 .

[66]  Regional analysis of annual precipitation maxima in Montana , 1997 .

[67]  Balaji Rajagopalan,et al.  Wavelet Auto-Regressive Method (WARM) for multi-site streamflow simulation of data with non-stationary spectra , 2011 .

[68]  W. Asquith Depth-duration frequency of precipitation for Texas , 1998 .

[69]  J. Valdes,et al.  Nonparametric Approach for Estimating Return Periods of Droughts in Arid Regions , 2003 .

[70]  David G. Tarboton,et al.  Disaggregation procedures for stochastic hydrology based on nonparametric density estimation , 1998 .

[71]  Ximing Wu,et al.  Calculation of Maximum Entropy Densities with Application to Income Distribtuions , 2002 .

[72]  J. Dracup,et al.  On the definition of droughts , 1980 .

[73]  D. Burn,et al.  A comparison of streamflow generation models for reservoir capacity-yield analysis , 1989 .

[74]  V. Yevjevich Objective approach to definitions and investigations of continental hydrologic droughts, An , 2007 .

[75]  Jery R. Stedinger,et al.  Condensed disaggregation procedures and conservation corrections for stochastic hydrology , 1988 .

[76]  A. W. Matz,et al.  Maximum Likelihood Parameter Estimation for the Quartic Exponential Distribution , 1978 .

[77]  G. North,et al.  The impact of global warming on Texas : a report of the Task Force on Climate Change in Texas , 1995 .

[78]  J. Dracup,et al.  On the generation of drought events using an alternating renewal-reward model , 1992 .

[79]  Saralees Nadarajah,et al.  A bivariate gamma model for drought , 2007 .

[80]  Upmanu Lall,et al.  A nonparametric stochastic approach for multisite disaggregation of annual to daily streamflow , 2010 .

[81]  Balaji Rajagopalan,et al.  A stochastic nonparametric technique for space‐time disaggregation of streamflows , 2007 .

[82]  Luc Perreault,et al.  The use of geometric and gamma-related distributions for frequency analysis of water deficit , 1992 .

[83]  J. M. Mejía,et al.  Disaggregation models in hydrology revisited , 1976 .

[84]  Jose D. Salas,et al.  Characterizing the severity and risk of drought in the Poudre River, Colorado , 2005 .

[85]  T. J. Larkin,et al.  Climatic atlas of Texas , 1983 .

[86]  C. Genest,et al.  Everything You Always Wanted to Know about Copula Modeling but Were Afraid to Ask , 2007 .

[87]  Vijay P. Singh,et al.  Frequency analysis of droughts using the Plackett copula and parameter estimation by genetic algorithm , 2010 .

[88]  D. Lettenmaier,et al.  An operational approach to preserving skew in hydrologic models of long‐term persistence , 1977 .

[89]  Saralees Nadarajah,et al.  Assessment of hydrological droughts for the Yellow River, China, using copulas , 2007 .

[90]  Irving I. Gringorten,et al.  A plotting rule for extreme probability paper , 1963 .

[91]  Jenq-Tzong Shiau,et al.  Fitting Drought Duration and Severity with Two-Dimensional Copulas , 2006 .

[92]  E. Zelenhasić,et al.  A method of streamflow drought analysis , 1987 .

[93]  Hsieh Wen Shen,et al.  Recurrence Analysis of Hydrologic Droughts of Differing Severity , 2001 .

[94]  G. North,et al.  The Impact of Global Warming on Texas , 2011 .