Induction and transcriptional regulation of the co-inhibitory gene module in T cells

[1]  Richard Bonneau,et al.  Critical role of IRF1 and BATF in forming chromatin landscape during type 1 regulatory cell differentiation , 2017, Nature Immunology.

[2]  Todd M. Allen,et al.  The epigenetic landscape of T cell exhaustion , 2016, Science.

[3]  Aviv Regev,et al.  A Distinct Gene Module for Dysfunction Uncoupled from Activation in Tumor-Infiltrating T Cells , 2016, Cell.

[4]  Matheus C. Bürger,et al.  Defining CD8+ T cells that provide the proliferative burst after PD-1 therapy , 2016, Nature.

[5]  Evan Z. Macosko,et al.  Comprehensive Classification of Retinal Bipolar Neurons by Single-Cell Transcriptomics , 2016, Cell.

[6]  H. Weiner,et al.  IL-10-dependent Tr1 cells attenuate astrocyte activation and ameliorate chronic central nervous system inflammation , 2016, Brain : a journal of neurology.

[7]  Ana C Anderson,et al.  Lag-3, Tim-3, and TIGIT: Co-inhibitory Receptors with Specialized Functions in Immune Regulation. , 2016, Immunity.

[8]  W. Shi,et al.  Hobit and Blimp1 instruct a universal transcriptional program of tissue residency in lymphocytes , 2016, Science.

[9]  Charles H. Yoon,et al.  Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq , 2016, Science.

[10]  E. Wherry,et al.  Molecular and cellular insights into T cell exhaustion , 2015, Nature Reviews Immunology.

[11]  Sean C. Bendall,et al.  Data-Driven Phenotypic Dissection of AML Reveals Progenitor-like Cells that Correlate with Prognosis , 2015, Cell.

[12]  R. Ahmed,et al.  An IL-27/NFIL3 signaling axis drives Tim-3 and IL-10 expression and T cell dysfunction , 2015, Nature Communications.

[13]  V. Kuchroo,et al.  Podoplanin negatively regulates CD4+ effector T cell responses. , 2015, The Journal of clinical investigation.

[14]  J. Gough,et al.  Sequential transcriptional changes dictate safe and effective antigen-specific immunotherapy , 2014, Nature Communications.

[15]  Åsa K. Björklund,et al.  Full-length RNA-seq from single cells using Smart-seq2 , 2014, Nature Protocols.

[16]  Rona S. Gertner,et al.  Single-cell transcriptomics reveals bimodality in expression and splicing in immune cells , 2013, Nature.

[17]  Lieping Chen,et al.  Molecular mechanisms of T cell co-stimulation and co-inhibition , 2013, Nature Reviews Immunology.

[18]  E John Wherry,et al.  Network analysis reveals centrally connected genes and pathways involved in CD8+ T cell exhaustion versus memory. , 2012, Immunity.

[19]  Richard Bonneau,et al.  A Validated Regulatory Network for Th17 Cell Specification , 2012, Cell.

[20]  Loise M. Francisco,et al.  Interleukin-27 priming of T cells controls IL-17 production in trans via induction of the ligand PD-L1. , 2012, Immunity.

[21]  C. Birchmeier,et al.  The Transcription Factor c-Maf Controls Touch Receptor Development and Function , 2012, Science.

[22]  Colin N. Dewey,et al.  RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome , 2011, BMC Bioinformatics.

[23]  Jenna M. Sullivan,et al.  Targeting Tim-3 and PD-1 pathways to reverse T cell exhaustion and restore anti-tumor immunity , 2011, The Journal of Experimental Medicine.

[24]  Jenna M. Sullivan,et al.  Targeting Tim-3 and PD-1 pathways to reverse T cell exhaustion and restore anti-tumor immunity , 2010, The Journal of experimental medicine.

[25]  Gary D. Bader,et al.  Cytoscape Web: an interactive web-based network browser , 2010, Bioinform..

[26]  H. Weiner,et al.  The Aryl hydrocarbon Receptor (AhR) interacts with c-Maf to promote the differentiation of IL-27-induced regulatory type 1 (TR1) cells , 2010, Nature Immunology.

[27]  W. Huber,et al.  which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. MAnorm: a robust model for quantitative comparison of ChIP-Seq data sets , 2011 .

[28]  Lior Pachter,et al.  Sequence Analysis , 2020, Definitions.

[29]  Cole Trapnell,et al.  Ultrafast and memory-efficient alignment of short DNA sequences to the human genome , 2009, Genome Biology.

[30]  N. Friedman,et al.  Structure and function of a transcriptional network activated by the MAPK Hog1 , 2008, Nature Genetics.

[31]  Jean-Loup Guillaume,et al.  Fast unfolding of communities in large networks , 2008, 0803.0476.

[32]  H. Weiner,et al.  A dominant function for interleukin 27 in generating interleukin 10–producing anti-inflammatory T cells , 2007, Nature Immunology.

[33]  Christopher A Hunter,et al.  Interleukins 27 and 6 induce STAT3-mediated T cell production of interleukin 10 , 2007, Nature Immunology.

[34]  Mohamed El-behi,et al.  Suppression of autoimmune inflammation of the central nervous system by interleukin 10 secreted by interleukin 27–stimulated T cells , 2007, Nature Immunology.

[35]  Sean R. Davis,et al.  GEOquery: a bridge between the Gene Expression Omnibus (GEO) and BioConductor , 2007, Bioinform..

[36]  J. Mesirov,et al.  GenePattern 2.0 , 2006, Nature Genetics.

[37]  Gordon K Smyth,et al.  Linear Models and Empirical Bayes Methods for Assessing Differential Expression in Microarray Experiments , 2004, Statistical applications in genetics and molecular biology.

[38]  E. Rosen,et al.  Mice with a Severe Deficiency of the Endothelial Protein C Receptor Gene Develop, Survive, and Reproduce Normally, and Do not Present with Enhanced Arterial Thrombosis after Challenge , 2002, Thrombosis and Haemostasis.

[39]  D. Speiser,et al.  Molecular profiling of CD8 T cells in autochthonous melanoma identifies Maf as driver of exhaustion , 2015, The EMBO journal.

[40]  Geoffrey E. Hinton,et al.  Visualizing Data using t-SNE , 2008 .

[41]  Cheng Li,et al.  Adjusting batch effects in microarray expression data using empirical Bayes methods. , 2007, Biostatistics.

[42]  Gordon K. Smyth,et al.  limma: Linear Models for Microarray Data , 2005 .