Free vibrations of rotating composite conical shells with stringer and ring stiffeners

In this paper, an analytical solution for the free vibration of rotating composite conical shells with axial stiffeners (stringers) and circumferential stiffener (rings), is presented using an energy-based approach. Ritz method is applied while stiffeners are treated as discrete elements. The conical shells are stiffened with uniform interval and it is assumed that the stiffeners have the same material and geometric properties. The study includes the effects of the coriolis and centrifugal accelerations, and the initial hoop tension. The results obtained include the relationship between frequency parameter and circumferential wave number as well as rotating speed at various angles. Influences of geometric properties on the frequency parameter are also discussed. In order to validate the present analysis, it is compared with other published works for a non-stiffened conical shell; other comparison is made in the special case where the angle of the stiffened conical shell goes to zero, i.e., stiffened cylindrical shell. Good agreement is observed and a new range of results is presented for rotating stiffened conical shells which can be used as a benchmark to approximate solutions.