A Random Linear Network Coding Accelerator in a 2.4GHz Transmitter for IoT Applications

Random linear network coding (RLNC) is an emerging coding technique, which can provide several advantages in wireless networks, such as throughput gains, increased data robustness, and better utilization of network resources. In this paper, we present the first custom VLSI implementation of RLNC, integrated with an ultralow-power 2.4-GHz transmitter. We examine its energy efficiency and error recovery performance in the context of Internet of Things applications, and we perform experiments quantifying its benefits when it operates separately and jointly with physical layer forward error correction (FEC) codes, as a joint channel and network coding scheme. The chip is fabricated in a 65-nm CMOS process, occupies <inline-formula> <tex-math notation="LaTeX">$2 \times 1.3 ~{\mathrm{ m}}{\mathrm{ m}}^{2}$ </tex-math></inline-formula> and consumes 580 pJ/bit for processing and transmitting data at 1 Mbps. The digital packet processor and encoder occupies <inline-formula> <tex-math notation="LaTeX">$200\times 200 ~\mu {\mathrm{ m}}^{2}$ </tex-math></inline-formula>, consists of an on-chip memory, a multi-rate convolutional encoder, and a RLNC accelerator with configurable redundancy, and consumes <inline-formula> <tex-math notation="LaTeX">$15\mu \text{W}$ </tex-math></inline-formula>, operating at 0.4 V. For improved spectral efficiency, an on-chip pulse shaping filter is implemented, reducing side lobes by 28 dB while consuming <inline-formula> <tex-math notation="LaTeX">$15\mu \text{W}$ </tex-math></inline-formula>. According to our over-the-air experiments, RLNC can provide an effective SNR improvement of 5.6 dB when combined with FEC rate 1/2, and 3.4 dB without FEC, at a packet error rate of <inline-formula> <tex-math notation="LaTeX">$10^{-2}$ </tex-math></inline-formula>.

[1]  Dave Evans,et al.  How the Next Evolution of the Internet Is Changing Everything , 2011 .

[2]  Muriel Médard,et al.  When Both Transmitting and Receiving Energies Matter: An Application of Network Coding in Wireless Body Area Networks , 2011, Networking Workshops.

[3]  Muriel Médard,et al.  A throughput-delay trade-off in packetized systems with erasures , 2005, Proceedings. International Symposium on Information Theory, 2005. ISIT 2005..

[4]  Arun Paidimarri,et al.  A 2.4 GHz Multi-Channel FBAR-based Transmitter With an Integrated Pulse-Shaping Power Amplifier , 2013, IEEE Journal of Solid-State Circuits.

[5]  Christina Fragouli,et al.  SenseCode: Network coding for reliable sensor networks , 2013, TOSN.

[6]  Tracey Ho,et al.  A Random Linear Network Coding Approach to Multicast , 2006, IEEE Transactions on Information Theory.

[7]  Richard D. Wesel,et al.  Optimal Allocation of Redundancy Between Packet-Level Erasure Coding and Physical-Layer Channel Coding in Fading Channels , 2011, IEEE Transactions on Communications.

[8]  Xin Wang,et al.  Nuclei: GPU-Accelerated Many-Core Network Coding , 2009, IEEE INFOCOM 2009.

[9]  Özgür B. Akan,et al.  Energy efficient network coding-based MAC for cooperative ARQ wireless networks , 2013, Ad Hoc Networks.

[10]  Reza Azarderakhsh,et al.  Efficient Algorithm and Architecture for Elliptic Curve Cryptography for Extremely Constrained Secure Applications , 2014, IEEE Transactions on Circuits and Systems I: Regular Papers.

[11]  Sanu Mathew,et al.  340mV–1.1V, 289Gbps/W, 2090-gate NanoAES hardware accelerator with area-optimized encrypt/decrypt GF(24)2 polynomials in 22nm tri-gate CMOS , 2014, 2014 Symposium on VLSI Circuits Digest of Technical Papers.

[12]  G. Manimaran,et al.  Design and experiment of testbed using network coding for power management , 2015, SIGBED.

[13]  B. Yamuna,et al.  Optimum energy efficient error control techniques in wireless systems: a survey , 2015, Journal of Communications Technology and Electronics.

[14]  Christina Fragouli,et al.  Network Coding Fundamentals , 2007, Found. Trends Netw..

[15]  Sanu Mathew,et al.  340 mV–1.1 V, 289 Gbps/W, 2090-Gate NanoAES Hardware Accelerator With Area-Optimized Encrypt/Decrypt GF(2 4 ) 2 Polynomials in 22 nm Tri-Gate CMOS , 2015, IEEE Journal of Solid-State Circuits.

[16]  Milica Stojanovic,et al.  Random Linear Network Coding For Time Division Duplexing: When To Stop Talking And Start Listening , 2008, IEEE INFOCOM 2009.

[17]  João Barros,et al.  Lightweight Security for Network Coding , 2008, 2008 IEEE International Conference on Communications.

[18]  Rudolf Ahlswede,et al.  Network information flow , 2000, IEEE Trans. Inf. Theory.

[19]  Joong Bum Rhim,et al.  Fountain Codes , 2010 .

[20]  Daniel A. Spielman,et al.  Efficient erasure correcting codes , 2001, IEEE Trans. Inf. Theory.

[21]  H. Charaf,et al.  Implementation of random linear network coding on OpenGL-enabled graphics cards , 2009, 2009 European Wireless Conference.

[22]  Indranil Gupta,et al.  AdapCode: Adaptive Network Coding for Code Updates in Wireless Sensor Networks , 2008, IEEE INFOCOM 2008 - The 27th Conference on Computer Communications.

[23]  Bülent Tavli,et al.  Optimizing physical-layer parameters for wireless sensor networks , 2011, TOSN.

[24]  Sunwoo Kim,et al.  Design and evaluation of random linear network coding Accelerators on FPGAs , 2013, TECS.

[25]  Shu Lin,et al.  Error control coding : fundamentals and applications , 1983 .

[26]  Anantha Chandrakasan,et al.  Challenges and Directions for Low-Voltage SRAM , 2011, IEEE Design & Test of Computers.

[27]  Daniel Enrique Lucani,et al.  Lean and mean: network coding for commercial devices , 2013, IEEE Wireless Communications.

[28]  Trieu-Kien Truong,et al.  A Comparison of VLSI Architecture of Finite Field Multipliers Using Dual, Normal, or Standard Bases , 1988, IEEE Trans. Computers.

[29]  Jörg Widmer,et al.  Network coding: an instant primer , 2006, CCRV.

[30]  Soumya K. Ghosh,et al.  Enhancement of Lifetime using Duty Cycle and Network Coding in Wireless Sensor Networks , 2013, IEEE Transactions on Wireless Communications.

[31]  Arun Paidimarri,et al.  Experimental study of the interplay of channel and network coding in low power sensor applications , 2013, 2013 IEEE International Conference on Communications (ICC).

[32]  Christian Schlegel,et al.  Error Control Coding in Low-Power Wireless Sensor Networks: When Is ECC Energy-Efficient? , 2006, EURASIP J. Wirel. Commun. Netw..