Dynamic Modeling of Parallel Robots for Computed-Torque Control Implementation

In recent years, increased interest in parallel robots has been ob served. Their control with modern theory, such as the computed- torque method, has, however, been restrained, essentially due to the difficulty in establishing a simple dynamic model that can be calcu lated in real time. In this paper, a simple method based on the virtual work principle is proposed for modeling parallel robots. The mass matrix of the robot, needed for decoupling control strategies, does not explicitly appear in the formulation; however, it can be computed separately, based on kinetic energy considerations. The method is applied to the DELTA parallel robot, leading to a very efficient model that has been implemented in a real-time computed-torque control algorithm.

[1]  D. C. H. Yang,et al.  Inverse dynamic analysis and simulation of a platform type of robot , 1988, J. Field Robotics.

[2]  F. Pierrot Robots pleinement parallèles légers : conception, modélisation et commande , 1991 .

[3]  V. Arnold Mathematical Methods of Classical Mechanics , 1974 .

[4]  A. Codourey,et al.  Contribution à la commande des robots rapides et précis , 1991 .

[5]  Reymond Clavel,et al.  The Lagrange-based model of Delta-4 robot dynamics , 1992, Robotersysteme.

[6]  R. Clavel Une nouvelle structure de manipulateur parallèle pour la robotique légère , 1989 .

[7]  Pradeep Kumar Khosla,et al.  Real-time control and identification of direct-drive manipulators (robotics) , 1986 .

[8]  G. Devaquet,et al.  A simple mechanical model for the DELTA-Robot , 1992, Robotersysteme.

[9]  Shin-Min Song,et al.  An efficient method for inverse dynamics of manipulators based on the virtual work principle , 1993, J. Field Robotics.

[10]  Frank L. Lewis,et al.  Dynamic analysis and control of a stewart platform manipulator , 1993, J. Field Robotics.

[11]  Philippe Guglielmetti Model-based control of fast parallel robots , 1994 .

[12]  Christopher G. Atkeson,et al.  Model-Based Control of a Robot Manipulator , 1988 .

[13]  J. G. MACGREGOR “Kinematics and Dynamics” , 1888, Nature.

[14]  H. Harry Asada,et al.  Direct-Drive Robots: Theory and Practice , 1987 .

[15]  Mohsen Shahinpoor,et al.  Inverse dynamics of a parallel manipulator , 1994, J. Field Robotics.

[16]  Yoshihiko Nakamura,et al.  Advanced robotics - redundancy and optimization , 1990 .

[17]  C. W. Burckhardt,et al.  Control Algorithm and Controller for the Direct Drive Delta Robot , 1991 .

[18]  Kenneth J. Waldron,et al.  Kinematics of a Hybrid Series-Parallel Manipulation System , 1989 .

[19]  Frank L. Lewis,et al.  Control of Robot Manipulators , 1993 .

[20]  R. Clavel Conception d'un robot parallèle rapide à 4 degrés de liberté , 1991 .

[21]  J. Kleinfinger Modelisation dynamique de robots a chaine : cinematique simple, arborescente, ou fermee, en vue de leur commande , 1986 .

[22]  P. Dauchez,et al.  HEXA: a fast six-DOF fully-parallel robot , 1991, Fifth International Conference on Advanced Robotics 'Robots in Unstructured Environments.

[23]  C. Reboulet,et al.  Dynamic models of a six degree of freedom parallel manipulators , 1991, Fifth International Conference on Advanced Robotics 'Robots in Unstructured Environments.

[24]  F. Sternheim,et al.  Computation of the direct and inverse geometric models of the Delta 4 parallel robot , 1987, Robotersysteme.

[25]  Jorge Angeles,et al.  Kinematics and dynamics of a six-degree-of-freedom parallel manipulator with revolute legs , 1997, Robotica.

[26]  C. Gosselin Parallel Computational Algorithms for the Kinematics and Dynamics of Planar and Spatial Parallel Manipulators , 1996 .