A critique of inverse solutions to slab geometry transport problems

[1]  C. Siewert Inverse problem for a finite slab , 1978 .

[2]  Norman J. McCormick,et al.  General solutions to inverse transport problems , 1981 .

[3]  W. L. Dunn,et al.  On the numerical characteristics of an inverse solution for three-term radiative transfer , 1980 .

[4]  L. C. Henyey,et al.  Diffuse radiation in the Galaxy , 1940 .

[5]  G. C. Pomraning,et al.  Linear Transport Theory , 1967 .

[6]  C. Siewert On establishing a two-term scattering law in the theory of radiative transfer , 1979 .

[7]  P. Zweifel,et al.  Time‐Dependent One‐Speed Albedo Problem for a Semi‐Infinite Medium , 1965 .

[8]  C. E. Siewert,et al.  On the inverse problem for a three-term phase function , 1979 .

[9]  D. Spencer Scattering Function for Fogs , 1960 .

[10]  S. Pahor,et al.  Optical properties of thick fog layers , 1970 .

[11]  N. McCormick,et al.  Addendum: On the inverse problem of transport theory with azimuthal dependence [J. Math. Phys. 19, 994(1978)] , 1979 .

[12]  J. A. Veeder,et al.  On the inverse problem of transport theory with azimuthal dependence , 1978 .

[13]  N. McCormick Remote characterization of a thick slab target with a pulsed laser , 1982 .

[14]  I. Kuščer,et al.  RECIPROCITY IN TIME-DEPENDENT NEUTRON TRANSPORT THEORY. , 1966 .

[15]  Norman J. McCormick,et al.  Transport scattering coefficients from reflection and transmission measurements , 1979 .

[16]  A. A. Maradudin,et al.  Tables of Higher Functions , 1960 .

[17]  Norman J. McCormick,et al.  Inverse problem transport calculations for anisotropic scattering coefficients , 1981 .