DC-EEG for routine clinical use : methods and clinical impact

OF DOCTORAL DISSERTATION Author Name of the dissertation Date of manuscript Date of the dissertation Monograph Article dissertation (summary + original articles)

[1]  Bradbury Mw The structure and function of the blood-brain barrier. , 1984 .

[2]  R W Gilliatt,et al.  Recent Advances in Clinical Neurophysiology , 1968 .

[3]  J. Webster,et al.  Reducing skin potential motion artefact by skin abrasion , 2006, Medical and Biological Engineering and Computing.

[4]  C. Grimbergen,et al.  Investigation into the origin of the noise of surface electrodes , 2002, Medical and Biological Engineering and Computing.

[5]  C. Woody,et al.  Brain potential shift with respiratory acidosis in the cat and monkey. , 1970, The American journal of physiology.

[6]  K. Sano,et al.  Diagnostic value of stationary potential measurement in head injuries. , 1974, Neurologia medico-chirurgica.

[7]  D. Panescu,et al.  A nonlinear finite element model of the electrode-electrolyte-skin system , 1994, IEEE Transactions on Biomedical Engineering.

[8]  L. E. Baker,et al.  Optimum electrolytic chloriding of silver electrodes , 2006, Medical and biological engineering.

[9]  Lippincott Williams Wilkins DC-EEG recording: A paradigm shift in seizure localization? , 2003, Neurology.

[10]  J. Ross,et al.  Some biochemical factors that modify the transcephalic DC potential. , 1967, Psychophysiology.

[11]  A. Yli-Hankala,et al.  Description of the Entropy™ algorithm as applied in the Datex‐Ohmeda S/5™ Entropy Module , 2004, Acta anaesthesiologica Scandinavica.

[12]  Nassib G. Chamoun,et al.  An introduction to bispectral analysis for the electroencephalogram , 1994, Journal of Clinical Monitoring.

[13]  T. Yokota,et al.  Studies on the diphasic wave form of the galvanic skin reflex. , 1959, Electroencephalography and clinical neurophysiology.

[14]  J. Born,et al.  Spindle and slow wave rhythms at slow wave sleep transitions are linked to strong shifts in the cortical direct current potential , 2003, Neuroscience.

[15]  M. Toyokura Waveform variation and size of sympathetic skin response: regional difference between the sole and palm recordings , 1999, Clinical Neurophysiology.

[16]  J. Hadgraft,et al.  Transdermal drug delivery: problems and possibilities. , 1987, Critical reviews in therapeutic drug carrier systems.

[17]  Iontophoretic delivery of drugs through membranes including human stratum corneum , 1992 .

[18]  K. Sano,et al.  Stationary potential of the brain: Part I. Basic studies. , 1979, Neurologia medico-chirurgica.

[19]  Margot J. Taylor,et al.  Guidelines for using human event-related potentials to study cognition: recording standards and publication criteria. , 2000, Psychophysiology.

[20]  H. Sharata,et al.  Effect of dipolar aprotic permeability enhancers on the basal stratum corneum. , 1988, Journal of pharmaceutical sciences.

[21]  E J Speckmann,et al.  DC potentials of the cerebral cortex. Seizure activity and changes in gas pressures. , 1987, Reviews of physiology, biochemistry and pharmacology.

[22]  M. Cowen The baseline transcephalic D.C. potential in normals. , 1967, Journal of psychiatric research.

[23]  A. Dornhorst,et al.  Respiratory Variations in Blood Pressure , 1952, Circulation.

[24]  E Pasquali,et al.  Measurement of the electrical skin resistance during skin drilling. , 1971, Psychophysiology.

[25]  Göran Stemme,et al.  Characterization of micromachined spiked biopotential electrodes , 2002, IEEE Transactions on Biomedical Engineering.

[26]  M. Brazier Chapter 1 – The Emergence of Electrophysiology as an Aid to Neurology , 2005 .

[27]  R. Scheuplein Permeability of the skin: a review of major concepts. , 1976, Current problems in dermatology.

[28]  R. Caton The Electric Currents of the Brain , 1970 .

[29]  B. W. Watson,et al.  The effect of the electrolyte applied to the surface of the skin on the measured electrical potential difference in vivo; an explanation of the apparently contradictory results in the literature. , 1975, Physics in medicine and biology.

[30]  C. E. Elger,et al.  Neuronal Mechanisms Underlying the Generation of Field Potentials , 1984 .

[31]  E. McAdams,et al.  Factors affecting electrode-gel-skin interface impedance in electrical impedance tomography , 1996, Medical and Biological Engineering and Computing.

[32]  F. L. D. Silva,et al.  EEG analysis: Theory and Practice , 1998 .

[33]  P. Berg,et al.  A fast method for forward computation of multiple-shell spherical head models. , 1994, Electroencephalography and clinical neurophysiology.

[34]  Brigitte Rockstroh,et al.  Hyperventilation-induced EEG changes in humans and their modulation by an anticonvulsant drug , 1990, Epilepsy Research.

[35]  Y Hayashida,et al.  Scalp-recorded direct current potential shifts induced by hypocapnia and hypercapnia in humans. , 1996, Electroencephalography and clinical neurophysiology.

[36]  J. Webster,et al.  The origin of skin-stretch-caused motion artifacts under electrodes. , 1996, Physiological measurement.

[37]  J. Born,et al.  Slow cortical DC-potential responses to sweet and bitter tastes in humans , 2000, Physiology & Behavior.

[38]  L A Geddes,et al.  Chlorided silver electrodes. , 1967, Medical research engineering.

[39]  Jaakko Malmivuo,et al.  Effect of skull resistivity on the spatial resolutions of EEG and MEG , 2004, IEEE Transactions on Biomedical Engineering.

[40]  D. Lykken,et al.  Square-wave analysis of skin impedance. , 1970, Psychophysiology.

[41]  B S Kopell,et al.  Prevalence and methods of control of the cephalic skin potential EEG artifact. , 1974, Psychophysiology.

[42]  P. Venables,et al.  Sodium and potassium electrolytes and "basal" skin potential levels in male and female subjects. , 1971, The Japanese journal of physiology.

[43]  E. Newman,et al.  Potassium buffering in the central nervous system , 2004, Neuroscience.

[44]  J. Webster,et al.  Minimizing Electrode Motion Artifact by Skin Abrasion , 1977, IEEE Transactions on Biomedical Engineering.

[45]  W. Singer Consciousness and the Binding Problem , 2001, Annals of the New York Academy of Sciences.

[46]  J. Born,et al.  Scalp recorded direct current potential shifts associated with the transition to sleep in man. , 1994, Electroencephalography and clinical neurophysiology.

[47]  M Haider,et al.  Occurrence of infraslow potential oscillations in relation to task, ability to concentrate and intelligence. , 1990, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[48]  J. Pappenheimer,et al.  ELECTRICAL POTENTIAL OF CEREBROSPINAL FLUID. , 1964, Journal of neurophysiology.

[49]  R. Edelberg,et al.  Relation of electrical properties of skin to structure and physiologic state. , 1977, The Journal of investigative dermatology.

[50]  B. Rockstroh,et al.  Slow potentials of the cerebral cortex and behavior. , 1990, Physiological reviews.

[51]  J. Palva,et al.  Infraslow oscillations modulate excitability and interictal epileptic activity in the human cortex during sleep. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[52]  O. Corrigan,et al.  Electrical properties of human stratum corneum and transdermal drug transport , 1993 .

[53]  J. Kamiya,et al.  Observation of very slow potential oscillations in human scalp recordings. , 1973, Electroencephalography and clinical neurophysiology.

[54]  H Shibasaki,et al.  Reappraisal of the effect of electrode property on recording slow potentials. , 1998, Electroencephalography and clinical neurophysiology.

[55]  J. Tarchanoff Ueber die galvanischen Erscheinungen in der Haut des Menschen bei Reizungen der Sinnesorgane und bei verschiedenen Formen der psychischen Thätigkeit , 1890, Archiv für die gesamte Physiologie des Menschen und der Tiere.

[56]  R. Wilcott,et al.  THE PARTIAL INDEPENDENCE OF SKIN POTENTIAL AND SKIN RESISTANCE FROM SWEATING. , 1964, Psychophysiology.

[57]  W. Freeman,et al.  Spatial spectra of scalp EEG and EMG from awake humans , 2003, Clinical Neurophysiology.

[58]  L. A. Geddes,et al.  Measurement of the Direct-Current (Faradic) Resistance of the Electrode-Electrolyte Interface for Commonly Used Electrode Materials , 2001, Annals of Biomedical Engineering.

[59]  P. Venables,et al.  Mechanisms of palmar skin resistance and skin potential. , 1966, Psychological bulletin.

[60]  R T Knight,et al.  A dry electrode for EEG recording. , 1994, Electroencephalography and clinical neurophysiology.

[61]  N. A. Aladzhalova Slow electrical processes in the brain , 1964 .

[62]  A. Lehmenkühler,et al.  Hypoxia- and hypercapnia-induced DC potential shifts in rat at the scalp and the skull are opposite in polarity to those at the cerebral cortex , 1999, Neuroscience Letters.

[63]  H. Pinkus,et al.  Examination of the epidermis by the strip method of removing horny layers. I. Observations on thickness of the horny layer, and on mitotic activity after stripping. , 1951, The Journal of investigative dermatology.

[64]  R. Scheuplein,et al.  Permeability of the skin. , 1971, Physiological reviews.

[65]  Geddes La,et al.  Chlorided silver electrodes. , 1967 .

[66]  J Kamiya,et al.  A very stable electrode system for recording human scalp potentials with direct-coupled amplifiers. , 1974, Electroencephalography and clinical neurophysiology.

[67]  J. L. Taylor,et al.  Slowly changing bioelectric potentials associated with the blood-brain barrier. , 1958, The American journal of physiology.

[68]  S. Grimnes,et al.  Dielectric breakdown of human skinin vivo , 1983, Medical and Biological Engineering and Computing.

[69]  R. Wurtz,et al.  Physiological correlates of steady potential shifts during sleep and wakefulness. I. Sensitivity of the steady potential to alterations in carbon dioxide. , 1967, Electroencephalography and clinical neurophysiology.

[70]  Controlled-release transdermal drug delivery. , 1985, Cutis.

[71]  P. E. Thomas,et al.  Relationship between sweat gland activity and electrical resistance of the skin. , 1957, Journal of applied physiology.

[72]  L. Widen,et al.  Recent Advances in Clinical Neurophysiology , 1967 .

[73]  John G. Webster,et al.  Medical Instrumentation: Application and Design , 1997 .

[74]  R. Wurtz,et al.  Physiological correlates of steady potential shifts during sleep and wakefulness. II. Brain temperature, blood pressure, and potential changes across the ependyma. , 1967, Electroencephalography and clinical neurophysiology.

[75]  E. Speckmann,et al.  Electrogenesis of Slow Potentials of the Brain , 1984 .

[76]  S Grimnes,et al.  Pathways of ionic flow through human skin in vivo. , 1984, Acta dermato-venereologica.

[77]  J. Voipio,et al.  Full-band EEG (FbEEG): an emerging standard in electroencephalography , 2005, Clinical Neurophysiology.

[78]  A. Yli-Hankala,et al.  Description of the EntropyTM algorithm as applied in the Datex-Ohmeda S / 5 TM Entropy Module , 2004 .

[79]  J. Voipio,et al.  A DC electroretinography method for the recording of human a-, b- and c-waves , 1990, Journal of Neuroscience Methods.

[80]  W. Walter,et al.  Contingent Negative Variation : An Electric Sign of Sensori-Motor Association and Expectancy in the Human Brain , 1964, Nature.

[81]  P. Zipp Impedance controlled skin drilling , 1983, Medical and Biological Engineering and Computing.

[82]  M. Brazier,et al.  UCLA FORUM IN MEDICAL SCIENCES , 1975 .

[83]  H Bauer,et al.  Technical requirements for high-quality scalp DC recordings. , 1989, Electroencephalography and clinical neurophysiology.

[84]  Y Yamamoto Measurement and analysis of skin electrical impedance. , 1994, Acta dermato-venereologica. Supplementum.

[85]  C. Vaidyanathan,et al.  A sampling theorem for EEG electrode configuration , 1997, IEEE Transactions on Biomedical Engineering.

[86]  R. Wilcott Inhibition of the cat's skin potential response by sensory stimulation pulsating at a low frequency. , 1971, Experimental neurology.

[87]  M. Cowen Elementary functional correlates of the transcephalic DC circuit. , 2008, Psychophysiology.

[88]  Wen H. Ko,et al.  Active electrodes for EEG and evoked potential , 1998, Proceedings of the 20th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Vol.20 Biomedical Engineering Towards the Year 2000 and Beyond (Cat. No.98CH36286).

[89]  S. Hillyard,et al.  Cephalic skin potentials in electroencephalography. , 1972, Electroencephalography and clinical neurophysiology.

[90]  J. Koryta Ions, electrodes, and membranes , 1982 .

[91]  J M Besson,et al.  Correlations of brain d-c shifts with changes in cerebral blood flow. , 1970, The American journal of physiology.

[92]  Ernst Fernando Lopes Da Silva Niedermeyer,et al.  Electroencephalography, basic principles, clinical applications, and related fields , 1982 .

[93]  J. Astley,et al.  Effect of dimethyl sulfoxide on permeability of human skin in vitro. , 1976, Journal of pharmaceutical sciences.

[94]  J. Wolpaw,et al.  EMG contamination of EEG: spectral and topographical characteristics , 2003, Clinical Neurophysiology.

[95]  L. Geddes,et al.  Electrode Potential Stability , 1985, IEEE Transactions on Biomedical Engineering.

[96]  J. Olesen,et al.  The electrical potential difference and impedance between CSF and blood in unanesthetized man. , 1978, Scandinavian journal of clinical and laboratory investigation.

[97]  S. Grimnes Impedance measurement of individual skin surface electrodes , 1983, Medical and Biological Engineering and Computing.

[98]  R Pallás-Areny,et al.  Ag-AgCl electrode noise in high-resolution ECG measurements. , 2000, Biomedical instrumentation & technology.

[99]  M J Christie,et al.  Effects on "basal" skin potential level of varying the concentration of an external electrolyte. , 1971, Journal of psychosomatic research.

[100]  Brian Shackel,et al.  Skin-Drilling: A Method of Diminishing Galvanic Skin-Potentials , 1959 .