HyperNP: Interactive Visual Exploration of Multidimensional Projection Hyperparameters

Projection algorithms such as t-SNE or UMAP are useful for the visualization of high dimensional data, but depend on hyperparameters which must be tuned carefully. Unfortunately, iteratively recomputing projections to find the optimal hyperparameter value is computationally intensive and unintuitive due to the stochastic nature of these methods. In this paper we propose HyperNP, a scalable method that allows for real-time interactive hyperparameter exploration of projection methods by training neural network approximations. HyperNP can be trained on a fraction of the total data instances and hyperparameter configurations and can compute projections for new data and hyperparameters at interactive speeds. HyperNP is compact in size and fast to compute, thus allowing it to be embedded in lightweight visualization systems such as web browsers. We evaluate the performance of the HyperNP across three datasets in terms of performance and speed. The results suggest that HyperNP is accurate, scalable, interactive, and appropriate for use in real-world settings.

[1]  Andreas Kerren,et al.  Toward a Quantitative Survey of Dimension Reduction Techniques , 2019, IEEE Transactions on Visualization and Computer Graphics.

[2]  Xiaohui Yu,et al.  A Perception-Driven Approach to Supervised Dimensionality Reduction for Visualization , 2018, IEEE Transactions on Visualization and Computer Graphics.

[3]  Marcus A. Magnor,et al.  Perception-based visual quality measures , 2011, 2011 IEEE Conference on Visual Analytics Science and Technology (VAST).

[4]  Haim Levkowitz,et al.  Least Square Projection: A Fast High-Precision Multidimensional Projection Technique and Its Application to Document Mapping , 2008, IEEE Transactions on Visualization and Computer Graphics.

[5]  Michaël Aupetit,et al.  SepMe: 2002 New visual separation measures , 2016, 2016 IEEE Pacific Visualization Symposium (PacificVis).

[6]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[7]  Jarkko Venna,et al.  Visualizing gene interaction graphs with local multidimensional scaling , 2006, ESANN.

[8]  Georges G. Grinstein,et al.  Iconographic Displays For Visualizing Multidimensional Data , 1988, Proceedings of the 1988 IEEE International Conference on Systems, Man, and Cybernetics.

[9]  Stefan Holzer,et al.  VisCoDeR: A tool for visually comparing dimensionality reduction algorithms , 2018, ESANN.

[10]  Nitish Srivastava,et al.  Dropout: a simple way to prevent neural networks from overfitting , 2014, J. Mach. Learn. Res..

[11]  Luis Gustavo Nonato,et al.  Local Affine Multidimensional Projection , 2011, IEEE Transactions on Visualization and Computer Graphics.

[12]  Michaël Aupetit,et al.  Data‐driven Evaluation of Visual Quality Measures , 2015, Comput. Graph. Forum.

[13]  Valerio Pascucci,et al.  Visual Exploration of High‐Dimensional Data through Subspace Analysis and Dynamic Projections , 2015, Comput. Graph. Forum.

[14]  Jaegul Choo,et al.  iVisClassifier: An interactive visual analytics system for classification based on supervised dimension reduction , 2010, 2010 IEEE Symposium on Visual Analytics Science and Technology.

[15]  Barbara Hammer,et al.  Visualizing the quality of dimensionality reduction , 2013, ESANN.

[16]  Jeffrey Heer,et al.  The Effects of Interactive Latency on Exploratory Visual Analysis , 2014, IEEE Transactions on Visualization and Computer Graphics.

[17]  Geoffrey E. Hinton,et al.  Reducing the Dimensionality of Data with Neural Networks , 2006, Science.

[18]  Dacheng Tao,et al.  Control Batch Size and Learning Rate to Generalize Well: Theoretical and Empirical Evidence , 2019, NeurIPS.

[19]  Alexandru Telea,et al.  Improving Neural Network-based Multidimensional Projections , 2020, VISIGRAPP.

[20]  Alex Endert,et al.  InterAxis: Steering Scatterplot Axes via Observation-Level Interaction , 2016, IEEE Transactions on Visualization and Computer Graphics.

[21]  Roland Vollgraf,et al.  Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning Algorithms , 2017, ArXiv.

[22]  John J. Bertin,et al.  The semiology of graphics , 1983 .

[23]  Alfred Inselberg,et al.  The plane with parallel coordinates , 1985, The Visual Computer.

[24]  Valerio Pascucci,et al.  Visualizing High-Dimensional Data: Advances in the Past Decade , 2017, IEEE Transactions on Visualization and Computer Graphics.

[25]  LIII , 2018, Out of the Shadow.

[26]  Matthew Brand,et al.  Fast Online SVD Revisions for Lightweight Recommender Systems , 2003, SDM.

[27]  Michel Verleysen,et al.  Quality assessment of dimensionality reduction: Rank-based criteria , 2009, Neurocomputing.

[28]  Geoffrey E. Hinton,et al.  Rectified Linear Units Improve Restricted Boltzmann Machines , 2010, ICML.

[29]  Luis Gustavo Nonato,et al.  Multidimensional Projection for Visual Analytics: Linking Techniques with Distortions, Tasks, and Layout Enrichment , 2019, IEEE Transactions on Visualization and Computer Graphics.

[30]  Carlo Luschi,et al.  Revisiting Small Batch Training for Deep Neural Networks , 2018, ArXiv.

[31]  Daniel Engel,et al.  A Survey of Dimension Reduction Methods for High-dimensional Data Analysis and Visualization , 2011, VLUDS.

[32]  C. R. Rao,et al.  The Utilization of Multiple Measurements in Problems of Biological Classification , 1948 .

[33]  Jeffrey Pennington,et al.  GloVe: Global Vectors for Word Representation , 2014, EMNLP.

[34]  Haim Levkowitz,et al.  From Visual Data Exploration to Visual Data Mining: A Survey , 2003, IEEE Trans. Vis. Comput. Graph..

[35]  Andreas Kerren,et al.  t-viSNE: Interactive Assessment and Interpretation of t-SNE Projections , 2020, IEEE Transactions on Visualization and Computer Graphics.

[36]  S T Roweis,et al.  Nonlinear dimensionality reduction by locally linear embedding. , 2000, Science.

[37]  Jorge Nocedal,et al.  On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima , 2016, ICLR.

[38]  G. Fitzgerald,et al.  'I. , 2019, Australian journal of primary health.

[39]  Rosane Minghim,et al.  Explaining Neighborhood Preservation for Multidimensional Projections , 2015, CGVC.

[40]  E. F. Vernier,et al.  Quantitative Evaluation of Time‐Dependent Multidimensional Projection Techniques , 2020, Comput. Graph. Forum.

[41]  Zoubin Ghahramani,et al.  Unifying linear dimensionality reduction , 2014, 1406.0873.

[42]  D. F. Andrews,et al.  PLOTS OF HIGH-DIMENSIONAL DATA , 1972 .

[43]  Marco Cavallo,et al.  A Visual Interaction Framework for Dimensionality Reduction Based Data Exploration , 2018, CHI.

[44]  Sergey Ioffe,et al.  Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift , 2015, ICML.

[45]  Alexandru Telea,et al.  Deep learning multidimensional projections , 2019, Inf. Vis..

[46]  Daniel A. Keim,et al.  Visual quality metrics and human perception: an initial study on 2D projections of large multidimensional data , 2010, AVI.

[47]  Alex Endert,et al.  AxiSketcher: Interactive Nonlinear Axis Mapping of Visualizations through User Drawings , 2017, IEEE Transactions on Visualization and Computer Graphics.

[48]  Edsger W. Dijkstra,et al.  A note on two problems in connexion with graphs , 1959, Numerische Mathematik.

[49]  Hans-Peter Kriegel,et al.  VisDB: database exploration using multidimensional visualization , 1994, IEEE Computer Graphics and Applications.

[50]  Chris North,et al.  SIRIUS: Dual, Symmetric, Interactive Dimension Reductions , 2019, IEEE Transactions on Visualization and Computer Graphics.

[51]  Geoffrey E. Hinton,et al.  Stochastic Neighbor Embedding , 2002, NIPS.

[52]  Cláudio T. Silva,et al.  Two-Phase Mapping for Projecting Massive Data Sets , 2010, IEEE Transactions on Visualization and Computer Graphics.

[53]  Leland McInnes,et al.  UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction , 2018, ArXiv.

[54]  E. LESTER SMITH,et al.  AND OTHERS , 2005 .

[55]  Alberto D. Pascual-Montano,et al.  A survey of dimensionality reduction techniques , 2014, ArXiv.

[56]  Joshua B. Tenenbaum,et al.  Global Versus Local Methods in Nonlinear Dimensionality Reduction , 2002, NIPS.

[57]  Haim Levkowitz,et al.  Projection inspector: Assessment and synthesis of multidimensional projections , 2015, Neurocomputing.

[58]  Elmar Eisemann,et al.  Approximated and User Steerable tSNE for Progressive Visual Analytics , 2015, IEEE Transactions on Visualization and Computer Graphics.

[59]  Charl P. Botha,et al.  Piece wise Laplacian‐based Projection for Interactive Data Exploration and Organization , 2011, Comput. Graph. Forum.

[60]  Rosane Minghim,et al.  Interactive Document Clustering Revisited: A Visual Analytics Approach , 2018, IUI.

[61]  André Stuhlsatz,et al.  Feature Extraction With Deep Neural Networks by a Generalized Discriminant Analysis , 2012, IEEE Transactions on Neural Networks and Learning Systems.

[62]  Geoffrey E. Hinton,et al.  Visualizing Data using t-SNE , 2008 .

[63]  J. Hartigan Printer graphics for clustering , 1975 .

[64]  William Ribarsky,et al.  iPCA: An Interactive System for PCA‐based Visual Analytics , 2009, Comput. Graph. Forum.

[65]  Boris Müller,et al.  Probing Projections: Interaction Techniques for Interpreting Arrangements and Errors of Dimensionality Reductions , 2016, IEEE Transactions on Visualization and Computer Graphics.

[66]  Rosane Minghim,et al.  Visual analysis of dimensionality reduction quality for parameterized projections , 2014, Comput. Graph..

[67]  Mukund Balasubramanian,et al.  The Isomap Algorithm and Topological Stability , 2002, Science.

[68]  Carlos Eduardo Scheidegger,et al.  DimReader: Axis lines that explain non-linear projections , 2017, IEEE Transactions on Visualization and Computer Graphics.

[69]  Matthew O. Ward,et al.  Exploring N-dimensional databases , 1990, Proceedings of the First IEEE Conference on Visualization: Visualization `90.

[70]  Eric O. Postma,et al.  Dimensionality Reduction: A Comparative Review , 2008 .

[71]  Herman Chernoff,et al.  The Use of Faces to Represent Points in k- Dimensional Space Graphically , 1973 .

[72]  Daniel A. Keim,et al.  Visual Interaction with Dimensionality Reduction: A Structured Literature Analysis , 2017, IEEE Transactions on Visualization and Computer Graphics.

[73]  Jean-Daniel Fekete,et al.  Visualizing Dimensionality Reduction Artifacts: An Evaluation , 2017, ArXiv.

[74]  Paulo E. Rauber,et al.  Visualizing Time-Dependent Data Using Dynamic t-SNE , 2016, EuroVis.

[75]  Martin Wattenberg,et al.  How to Use t-SNE Effectively , 2016 .

[76]  Carla E. Brodley,et al.  Dis-function: Learning distance functions interactively , 2012, 2012 IEEE Conference on Visual Analytics Science and Technology (VAST).

[77]  Helwig Hauser,et al.  Visualization and Visual Analysis of Multifaceted Scientific Data: A Survey , 2013, IEEE Transactions on Visualization and Computer Graphics.