Vibrational Properties of CuO and Cu4O3 from First-Principles Calculations, and Raman and Infrared Spectroscopy

A combined experimental and theoretical study is reported on the vibrational properties of tenorite CuO and paramelaconite Cu4O3. The optically active modes have been measured by Raman scattering and infrared absorption spectroscopy. First-principles calculations have been carried out with the LDA+U approach to account for strong electron correlation in the copper oxides. The vibrational properties have been computed ab initio using the so-called direct method. Excellent agreement is found between the measured Raman and infrared peak positions and the calculated phonon frequencies at the Brillouin zone center, which allows the assignment of all prominent peaks of the Cu4O3 spectra. Through a detailed analysis of the displacement eigenvectors, it is shown that a close relationship exists between the Raman modes of CuO and Cu4O3.

[1]  Yoshiyuki Kawazoe,et al.  First-Principles Determination of the Soft Mode in Cubic ZrO 2 , 1997 .

[2]  S. Ishizuka,et al.  Thin film deposition of Cu2O and application for solar cells , 2006 .

[3]  P. Midgley,et al.  Room temperature ferromagnetism in bulk Mn-Doped Cu2O , 2005 .

[4]  T. Inui,et al.  Doping effect of potassium permanganate on the performance of a copper/zinc oxide/alumina catalyst for methanol formation , 1996 .

[5]  S. Xie,et al.  Size effect on the electron–phonon coupling in CuO nanocrystals , 2006, Nanotechnology.

[6]  Popovic,et al.  Far-infrared spectroscopic investigations on CuO. , 1990, Physical review. B, Condensed matter.

[7]  M. O'keeffe,et al.  The crystal structure of paramelaconite, Cu<4) O<3) , 1978 .

[8]  J. Pierson,et al.  Cuprite, paramelaconite and tenorite films deposited by reactive magnetron sputtering , 2003 .

[9]  C. Humphreys,et al.  Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study , 1998 .

[10]  H. Hosono,et al.  Electronic structure and optoelectronic properties of transparent p-type conducting CuAlO2 , 2000 .

[11]  B. Wanklyn,et al.  Lattice dynamics of cupric oxide , 1990 .

[12]  A. Bush,et al.  Infrared spectroscopic study of CuO: Signatures of strong spin-phonon interaction and structural distortion , 2000, cond-mat/0001176.

[13]  Hyung-Shik Shin,et al.  Versatile synthesis of rectangular shaped nanobat-like CuO nanostructures by hydrothermal method; structural properties and growth mechanism , 2009 .

[14]  Meng Tao,et al.  LSDA+U study of cupric oxide : Electronic structure and native point defects , 2006 .

[15]  P. Pulay Convergence acceleration of iterative sequences. the case of scf iteration , 1980 .

[16]  Jianbin Xu,et al.  Device lifetime improvement of polymer-based bulk heterojunction solar cells by incorporating copper oxide layer at Al cathode , 2011 .

[17]  S. Nikitine,et al.  Etude spectrophotometrique de la serie jaune de Cu2O aux basses temperatures , 1961 .

[18]  S. Mishra,et al.  Inelastic neutron scattering and lattice dynamical calculation of negative thermal expansion compoundsCu2OandAg2O , 2007 .

[19]  John R. Tumbleston,et al.  Minority carrier transport length of electrodeposited Cu2O in ZnO/Cu2O heterojunction solar cells , 2011 .

[20]  Claudio Frausto-Reyes,et al.  Complete oxidation of isopropanol over Cu4O3 (paramelaconite) coating deposited on fiberglass by CVD , 2009 .

[21]  E. Garbowski,et al.  Catalytic properties of copper oxide supported on zinc aluminate in methane combustion , 1991 .

[22]  G. Kresse,et al.  Ab initio molecular dynamics for liquid metals. , 1993 .

[23]  S. Åsbrink,et al.  A refinement of the crystal structure of copper(II) oxide with a discussion of some exceptional e.s.d.'s , 1970 .

[24]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[25]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[26]  E. A. Goldstein,et al.  Chemical kinetics of copper oxide reduction with carbon monoxide , 2011 .

[27]  Chen,et al.  Evidence for a strong spin-phonon interaction in cupric oxide. , 1995, Physical review. B, Condensed matter.

[28]  Masakazu Higuchi,et al.  Preparation of CuO thin films on porous BaTiO3 by self-assembled multibilayer film formation and application as a CO2 sensor , 1998 .

[29]  J. Hanson,et al.  Formation of stable Cu2O from reduction of CuO nanoparticles , 2006 .

[30]  Peter Mohn,et al.  Electronic and magnetic structure of cuprous oxide Cu2O doped with Mn, Fe, Co, and Ni : A density-functional theory study , 2007 .

[31]  P. Y. Yu,et al.  Multiple Resonance Effects on Raman Scattering at the Yellow-Exciton Series of Cu 2 O , 1974 .

[32]  J. Pierson,et al.  Properties and air annealing of paramelaconite thin films , 2003 .

[33]  J. Tarascon,et al.  Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries , 2000, Nature.

[34]  R. Egdell,et al.  On-site interband excitations in resonant inelastic x-ray scattering from Cu2O , 2008 .

[35]  J. Hanson,et al.  Reduction of CuO and Cu2O with H2: H embedding and kinetic effects in the formation of suboxides. , 2003, Journal of the American Chemical Society.

[36]  C. Stampfl,et al.  Ab initio lattice dynamics and thermal expansion of Cu 2 O , 2009 .

[37]  S. Ray Preparation of copper oxide thin film by the sol-gel-like dip technique and study of their structural and optical properties , 2001 .

[38]  M. Ivanda,et al.  Low-temperature anomalies of cuprite observed by Raman spectroscopy and x-ray powder diffraction , 1997 .

[39]  J. Hanson,et al.  Time-resolved Studies for the Mechanism of Reduction of Copper Oxides with Carbon Monoxide: Complex Behavior of Lattice Oxygen and the Formation of Suboxides , 2004 .

[40]  J. Rodríguez-Carvajal,et al.  Magnetic properties of paramelaconite (Cu 4 O 3 ): A pyrochlore lattice with S=1/2 , 2004 .

[41]  Hafner,et al.  Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. , 1994, Physical review. B, Condensed matter.

[42]  S. M. Shapiro,et al.  Study of phonon dispersion relations in cuprous oxide by inelastic neutron scattering , 1976 .

[43]  Parravicini,et al.  Optical gap of CuO. , 1995, Physical review. B, Condensed matter.

[44]  A. B. Pakhomov,et al.  Ferromagnetism in Mn-doped CuO , 2003 .

[45]  Y. Shen,et al.  Study of photoluminescence in Cu/sub 2/O , 1975 .