The Herschel Exploitation of Local Galaxy Andromeda (HELGA) - I. Global far-infrared and sub-mm morphology

We have obtained Herschel images at five wavelengths from 100 to 500 micron of a ~5.5x2.5 degree area centred on the local galaxy M31 (Andromeda), our nearest neighbour spiral galaxy, as part of the Herschel guaranteed time project 'HELGA'. The main goals of HELGA are to study the characteristics of the extended dust emission, focusing on larger scales than studied in previous observations of Andromeda at an increased spatial resolution, and the obscured star formation. In this paper we present the data reduction and provide a description of the far-infrared morphology, comparing it with features seen at other wavelengths. We use high-resolution maps of the atomic hydrogen, fully covering our fields, to identify dust emission features that genuinely belong to M31, distinguishing them from emission coming from the foreground Galactic cirrus. Thanks to the very large extension of our maps we detect, for the first time at far-infrared wavelengths, three ring-shaped structures extending out to ~21, ~26 and ~31 kpc respectively, in the south-western part of M31, with the innermost structure also having a counterpart at the opposite side. The presence of these features is safely confirmed by their detection in HI maps. Due to an unfortunate coincidence of M31's systemic velocity with the rotation speed in its outermost parts, together with the presence of a bright emission from the Galactic cirrus heavily contaminating the north-eastern side, the detection of the other fainter features on this side of the galaxy is more uncertain. We find that the dust in M31 significantly extends beyond the previously mapped far-infrared emission. An annular-like segment, extending beyond the already known 15-kpc ring, is clearly detected on both sides of the galaxy, and similar annular structures are undoubtedly detected on the south-west side as well.

[1]  R. Braun COSMOLOGICAL EVOLUTION OF ATOMIC GAS AND IMPLICATIONS FOR 21 cm H i ABSORPTION , 2012, 1202.1840.

[2]  M. Irwin,et al.  The Star Formation History and Dust Content in the Far Outer Disc of M31 , 2011, 1111.5234.

[3]  P. Panuzzo,et al.  Non-standard grain properties, dark gas reservoir, and extended submillimeter excess, probed by Herschel in the Large Magellanic Cloud , 2011, 1110.1260.

[4]  K. Sandstrom,et al.  Common-Resolution Convolution Kernels for Space- and Ground-Based Telescopes , 2011, 1106.5065.

[5]  Norikazu Mizuno,et al.  THE CO-TO-H2 CONVERSION FACTOR FROM INFRARED DUST EMISSION ACROSS THE LOCAL GROUP , 2011, 1102.4618.

[6]  M. Sauvage,et al.  On the Origin of M81 Group Extended Dust Emission , 2010, 1010.4770.

[7]  M. Sauvage,et al.  Herschel Inventory of The Agents of Galaxy Evolution (HERITAGE): the Large Magellanic Cloud dust , 2010, 1006.0985.

[8]  S. Ott,et al.  Herschel Space Observatory - An ESA facility for far-infrared and submillimetre astronomy , 2010, 1005.5331.

[9]  S. J. Liu,et al.  Herschel : the first science highlights Special feature L etter to the E ditor The Herschel-SPIRE instrument and its in-flight performance , 2010 .

[10]  D. Calzetti,et al.  Cool gas and dust in M 33: Results from the HERschel M 33 Extended Survey (HERM33ES) , 2010, 1005.3422.

[11]  G. Gavazzi,et al.  The Herschel Virgo Cluster Survey. IV. Resolved dust analysis of spiral galaxies , 2010, 1005.3057.

[12]  D. Calzetti,et al.  PACS and SPIRE photometer maps of M33: First results of the Herschel M33 extended survey (HERM33ES) , 2010, 1005.2563.

[13]  D. L. Clements,et al.  The Herschel Space Observatory view of dust in M81 , 2010, 1005.1889.

[14]  F. Tabatabaei,et al.  Relating dust, gas, and the rate of star formation in M 31 , 2010, 1004.4306.

[15]  M. Halpern,et al.  Extragalactic Submillimetric Surveys with BLAST , 2010 .

[16]  D. Thilker,et al.  A wide-field H I mosaic of Messier 31 - II. The disk warp, rotation, and the dark matter halo , 2009, 0912.4133.

[17]  S. Maddox,et al.  The Herschel ATLAS , 2009, 0910.4279.

[18]  Brandon University,et al.  H i KINEMATICS AND DYNAMICS OF MESSIER 31 , 2009, 0909.3846.

[19]  S. Seitz,et al.  Properties of M31 - I. Dust. Basic properties and a discussion about age-dependent dust heating , 2009, 0907.0669.

[20]  S. Shen,et al.  Milky Way versus Andromeda: a tale of two disks , 2009, 0906.4821.

[21]  D. Thilker,et al.  A WIDE-FIELD HIGH-RESOLUTION H i MOSAIC OF MESSIER 31. I. OPAQUE ATOMIC GAS AND STAR FORMATION RATE DENSITY , 2009, 0901.4154.

[22]  P. Ade,et al.  The SPIRE Instrument , 2009 .

[23]  A. Bolatto,et al.  THE DUST-TO-GAS RATIO IN THE SMALL MAGELLANIC CLOUD TAIL , 2008, 0811.2789.

[24]  Avon Huxor,et al.  A Trio of New Local Group Galaxies with Extreme Properties , 2008, 0806.3988.

[25]  Thomas Henning,et al.  The Photodetector Array Camera and Spectrometer (PACS) for the Herschel Space Observatory , 2004, Astronomical Telescopes + Instrumentation.

[26]  J. Beeman,et al.  Absolute Calibration and Characterization of the Multiband Imaging Photometer for Spitzer. III. An Asteroid‐based Calibration of MIPS at 160 μm , 2007, 0707.2103.

[27]  D. Calzetti,et al.  Dust Masses, PAH Abundances, and Starlight Intensities in the SINGS Galaxy Sample , 2007, astro-ph/0703213.

[28]  B. Milliard,et al.  The GALEX Ultraviolet Atlas of Nearby Galaxies , 2006, astro-ph/0606440.

[29]  G. Fazio,et al.  An almost head-on collision as the origin of two off-centre rings in the Andromeda galaxy , 2006, Nature.

[30]  R. Humphreys,et al.  Dusty Waves on a Starry Sea: The Mid-Infrared View of M31 , 2006, astro-ph/0608593.

[31]  B. Gibson,et al.  Spitzer MIPS Infrared Imaging of M31: Further Evidence for a Spiral-Ring Composite Structure , 2006, astro-ph/0601314.

[32]  Bonn,et al.  Molecular gas in the Andromeda galaxy , 2005, astro-ph/0512563.

[33]  Puragra Guhathakurta,et al.  Unveiling the Boxy Bulge and Bar of the Andromeda Spiral Galaxy , 2005 .

[34]  Westerbork H I observations of high-velocity clouds near M 31 and M 33 , 2005, astro-ph/0503246.

[35]  M. Irwin,et al.  Distances and metallicities for 17 Local Group galaxies , 2004, astro-ph/0410489.

[36]  F. Haberl,et al.  An XMM-Newton survey of M 31 , 2004 .

[37]  D. Thilker,et al.  On the Continuing Formation of the Andromeda Galaxy: Detection of H I Clouds in the M31 Halo , 2003, astro-ph/0311571.

[38]  B. Draine INTERSTELLAR DUST GRAINS , 2003, astro-ph/0304489.

[39]  Chemical composition of B-type supergiants in the OB 8, OB 10, OB 48, OB 78 associations of M 31 , 2002, astro-ph/0207198.

[40]  M. Edmunds An elementary model for the dust cycle in galaxies , 2001 .

[41]  Y. Mellier,et al.  Gas, Dust, and Young Stars in the Outer Disk of M31 , 2001, astro-ph/0102350.

[42]  B. Draine,et al.  Infrared Emission from Interstellar Dust Ii. the Diffuse Interstellar Medium , 2000 .

[43]  G. Smoot,et al.  A Study of External Galaxies Detected by the COBE Diffuse Infrared Background Experiment , 1998 .

[44]  E.,et al.  THE COBE DIFFUSE INFRARED BACKGROUND EXPERIMENT SEARCH FOR THE COSMIC INFRARED BACKGROUND . I . LIMITS AND DETECTIONS , 1998 .

[45]  G. Helou,et al.  High Resolution IRAS Maps and IR Emission of M31 - I, Morphology and Sources , 1995, astro-ph/9507089.

[46]  N. Duric,et al.  Two views of the Andromeda Galaxy H-alpha and far infrared , 1994 .

[47]  H. M. Lee,et al.  Optical properties of interstellar graphite and silicate grains , 1984 .

[48]  de T. Jong,et al.  INFRARED-EMISSION FROM M31 , 1984 .