An Incidence Theorem in Higher Dimensions

We prove almost tight bounds on the number of incidences between points and k-dimensional varieties of bounded degree in Rd. Our main tools are the polynomial ham sandwich theorem and induction on both the dimension and the number of points.

[1]  Gyorgy Elekes On the Dimension of Finite Point Sets II. "Das Budapester Programm" , 2011 .

[2]  János Pach,et al.  Research problems in discrete geometry , 2005 .

[3]  Micha Sharir,et al.  Combinatorial Geometry and Its Algorithmic Applications , 2008 .

[4]  Mei-Chu Chang,et al.  Additive and Multiplicative Structure in Matrix Spaces , 2007, Combinatorics, Probability and Computing.

[5]  Marie-Françoise Roy,et al.  The complexification and degree of a semi-algebraic set , 2002 .

[6]  Larry Guth,et al.  Algebraic methods in discrete analogs of the Kakeya problem , 2008, 0812.1043.

[7]  J. Tukey,et al.  Generalized “sandwich” theorems , 1942 .

[8]  Larry Guth,et al.  On the Erdos distinct distance problem in the plane , 2010, 1011.4105.

[9]  Terence Tao,et al.  The sum-product phenomenon in arbitrary rings , 2008, Contributions Discret. Math..

[10]  Haim Kaplan,et al.  Simple Proofs of Classical Theorems in Discrete Geometry via the Guth–Katz Polynomial Partitioning Technique , 2011, Discret. Comput. Geom..

[11]  E. Szemerédi,et al.  Crossing-Free Subgraphs , 1982 .

[12]  Csaba D. Tóth,et al.  Distinct Distances in Homogeneous Sets in Euclidean Space , 2006, Discret. Comput. Geom..

[13]  Saugata Basu,et al.  Refined Bounds on the Number of Connected Components of Sign Conditions on a Variety , 2011, Discret. Comput. Geom..

[14]  Joe W. Harris,et al.  Principles of Algebraic Geometry , 1978 .

[15]  Micha Sharir,et al.  Point-line incidences in space , 2002, SCG '02.

[16]  E. Szemerédi,et al.  Unit distances in the Euclidean plane , 1984 .

[17]  Joshua Zahl,et al.  An improved bound on the number of point-surface incidences in three dimensions , 2011, Contributions Discret. Math..

[18]  József Solymosi,et al.  Distinct distances in homogeneous sets , 2003, SCG '03.

[19]  Thomas Wolff,et al.  Recent work connected with the Kakeya problem , 2007 .

[20]  Joseph L. Taylor Several Complex Variables with Connections to Algebraic Geometry and Lie Groups , 2002 .

[21]  R. Thom Sur L'Homologie des Varietes Algebriques Réelles , 1965 .

[22]  L. A S Z L,et al.  Crossing Numbers and Hard Erdős Problems in Discrete Geometry , 1997 .

[23]  H. Warren Lower bounds for approximation by nonlinear manifolds , 1968 .

[24]  Ben Green,et al.  Approximate Subgroups of Linear Groups , 2010, 1005.1881.

[25]  Terence Tao,et al.  On the multilinear restriction and Kakeya conjectures , 2005, math/0509262.

[26]  T. Gowers Princeton companion to mathematics , 2008 .

[27]  József Solymosi,et al.  On the Number of Sums and Products , 2005 .

[28]  Joos Heintz,et al.  Corrigendum: Definability and Fast Quantifier Elimination in Algebraically Closed Fields , 1983, Theor. Comput. Sci..

[29]  André Galligo,et al.  Some New Effectivity Bounds in Computational Geometry , 1988, AAECC.

[30]  Gábor Tardos,et al.  On the number of k-rich transformations , 2007, SCG '07.

[31]  J. Milnor On the Betti numbers of real varieties , 1964 .

[32]  József Solymosi,et al.  Incidence Theorems for Pseudoflats , 2007, Discret. Comput. Geom..

[33]  V. Sós,et al.  On a problem of K. Zarankiewicz , 1954 .

[34]  T. Willmore Algebraic Geometry , 1973, Nature.

[35]  Micha Sharir,et al.  Applications of a New Space Partitioning Technique , 1991, WADS.

[36]  A. Harnack,et al.  Ueber die Vieltheiligkeit der ebenen algebraischen Curven , 1876 .

[37]  Csaba D. Tóth,et al.  Incidences of not-too-degenerate hyperplanes , 2005, Symposium on Computational Geometry.

[38]  I. Bárány LECTURES ON DISCRETE GEOMETRY (Graduate Texts in Mathematics 212) , 2003 .

[39]  S. Basu,et al.  On the number of cells defined by a family of polynomials on a variety , 1996 .

[40]  David Mumford,et al.  Varieties Defined by Quadratic Equations , 2010 .

[41]  Luke A. Griffin Encyclopaedia of Mathematics , 2013 .

[42]  Jiri Matousek,et al.  Lectures on discrete geometry , 2002, Graduate texts in mathematics.

[43]  Micha Sharir,et al.  Repeated Angles in the Plane and Related Problems , 1992, J. Comb. Theory, Ser. A.

[44]  Endre Szemerédi,et al.  Extremal problems in discrete geometry , 1983, Comb..

[45]  D. Mumford The red book of varieties and schemes , 1988 .

[46]  Joe W. Harris,et al.  Algebraic Geometry: A First Course , 1995 .

[47]  L. A. Oa,et al.  Crossing Numbers and Hard Erd} os Problems in Discrete Geometry , 1997 .

[48]  Micha Sharir,et al.  Incidences between points and circles in three and higher dimensions , 2002, SCG '02.

[49]  A. Iosevich,et al.  Geometric incidence theorems via Fourier analysis , 2007, 0709.3786.

[50]  Joe W. Harris,et al.  Principles of Algebraic Geometry: Griffiths/Principles , 1994 .

[51]  F. Thomas Leighton,et al.  Complexity Issues in VLSI , 1983 .

[52]  Micha Sharir,et al.  On the Number of Incidences Between Points and Curves , 1998, Combinatorics, Probability and Computing.

[53]  Joachim Schmid,et al.  On the affine Bezout inequality , 1995 .