Image Annotation by Latent Community Detection and Multikernel Learning

Automatic image annotation is an attractive service for users and administrators of online photo sharing websites. In this paper, we propose an image annotation approach that exploits latent semantic community of labels and multikernel learning (LCMKL). First, a concept graph is constructed for labels indicating the relationship between the concepts. Based on the concept graph, semantic communities are explored using an automatic community detection method. For an image to be annotated, a multikernel support vector machine is used to determine the image's latent community from its visual features. Then, a candidate label ranking based approach is determined by intracommunity and intercommunity ranking. Experiments on the NUS-WIDE database and IAPR TC-12 data set demonstrate that LCMKL outperforms some state-of-the-art approaches.

[1]  Zhi-Hua Zhou,et al.  Multi-Modal Image Annotation with Multi-Instance Multi-Label LDA , 2013, IJCAI.

[2]  Yiannis Kompatsiaris,et al.  Image clustering through community detection on hybrid image similarity graphs , 2010, 2010 IEEE International Conference on Image Processing.

[3]  Xirong Li,et al.  Classifying tag relevance with relevant positive and negative examples , 2013, ACM Multimedia.

[4]  Yi Yang,et al.  Web and Personal Image Annotation by Mining Label Correlation With Relaxed Visual Graph Embedding , 2012, IEEE Transactions on Image Processing.

[5]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[6]  Dong Liu,et al.  Tag ranking , 2009, WWW '09.

[7]  Xueming Qian,et al.  LCMKL: latent-community and multi-kernel learning based image annotation , 2013, CIKM.

[8]  Alex Arenas,et al.  Analysis of the structure of complex networks at different resolution levels , 2007, physics/0703218.

[9]  Marcel Worring,et al.  Learning Social Tag Relevance by Neighbor Voting , 2009, IEEE Transactions on Multimedia.

[10]  Md. Monirul Islam,et al.  A review on automatic image annotation techniques , 2012, Pattern Recognit..

[11]  Tat-Seng Chua,et al.  NUS-WIDE: a real-world web image database from National University of Singapore , 2009, CIVR '09.

[12]  Pedro Jussieu de Rezende,et al.  A data reduction and organization approach for efficient image annotation , 2013, SAC '13.

[13]  M E J Newman,et al.  Modularity and community structure in networks. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[14]  Nicu Sebe,et al.  Web Image Annotation Via Subspace-Sparsity Collaborated Feature Selection , 2012, IEEE Transactions on Multimedia.

[15]  Chih-Jen Lin,et al.  LIBLINEAR: A Library for Large Linear Classification , 2008, J. Mach. Learn. Res..

[16]  Rong Yan,et al.  A learning-based hybrid tagging and browsing approach for efficient manual image annotation , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[17]  Víctor Robles,et al.  Feature selection for multi-label naive Bayes classification , 2009, Inf. Sci..

[18]  Min-Ling Zhang,et al.  Lift: Multi-Label Learning with Label-Specific Features , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[19]  Xi Liu,et al.  Graph-based dimensionality reduction for KNN-based image annotation , 2012, Proceedings of the 21st International Conference on Pattern Recognition (ICPR2012).

[20]  Gunnar Rätsch,et al.  Large Scale Multiple Kernel Learning , 2006, J. Mach. Learn. Res..

[21]  Tat-Seng Chua,et al.  Semantic-Gap-Oriented Active Learning for Multilabel Image Annotation , 2012, IEEE Transactions on Image Processing.

[22]  Jianping Fan,et al.  Automatic image annotation by incorporating feature hierarchy and boosting to scale up SVM classifiers , 2006, MM '06.

[23]  Ramesh C. Jain,et al.  Label-specific training set construction from web resource for image annotation , 2013, Signal Process..

[24]  Zhi-Hua Zhou,et al.  ML-KNN: A lazy learning approach to multi-label learning , 2007, Pattern Recognit..

[25]  David A. Forsyth,et al.  Matching Words and Pictures , 2003, J. Mach. Learn. Res..

[26]  Ramesh C. Jain,et al.  Image annotation by kNN-sparse graph-based label propagation over noisily tagged web images , 2011, TIST.

[27]  P. Ronhovde,et al.  Local resolution-limit-free Potts model for community detection. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[28]  Santo Fortunato,et al.  Community detection in graphs , 2009, ArXiv.

[29]  Paul Clough,et al.  The IAPR TC-12 Benchmark: A New Evaluation Resource for Visual Information Systems , 2006 .

[30]  Michael I. Jordan,et al.  Latent Dirichlet Allocation , 2001, J. Mach. Learn. Res..

[31]  Vladimir Pavlovic,et al.  Baselines for Image Annotation , 2010, International Journal of Computer Vision.

[32]  M. Kutas,et al.  Brain potentials during reading reflect word expectancy and semantic association , 1984, Nature.

[33]  Edward Y. Chang,et al.  Using one-class and two-class SVMs for multiclass image annotation , 2005, IEEE Transactions on Knowledge and Data Engineering.

[34]  Thierry Denoeux,et al.  Multi-label classification algorithm derived from K-nearest neighbor rule with label dependencies , 2008, 2008 16th European Signal Processing Conference.

[35]  Jason Weston,et al.  A kernel method for multi-labelled classification , 2001, NIPS.

[36]  Jean-Loup Guillaume,et al.  Fast unfolding of communities in large networks , 2008, 0803.0476.

[37]  Cordelia Schmid,et al.  Aggregating local descriptors into a compact image representation , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[38]  Nenghai Yu,et al.  Flickr distance , 2008, ACM Multimedia.

[39]  Jianping Fan,et al.  Correlative multi-label multi-instance image annotation , 2011, 2011 International Conference on Computer Vision.

[40]  Qi Zhang,et al.  Automatic image annotation by an iterative approach: incorporating keyword correlations and region matching , 2007, CIVR '07.

[41]  Yuan Yan Tang,et al.  Social Image Tagging With Diverse Semantics , 2014, IEEE Transactions on Cybernetics.

[42]  Witold Pedrycz,et al.  Neighborhood rough sets based multi-label classification for automatic image annotation , 2013, Int. J. Approx. Reason..

[43]  Peter I. Cowling,et al.  MMAC: a new multi-class, multi-label associative classification approach , 2004, Fourth IEEE International Conference on Data Mining (ICDM'04).

[44]  Xiaojun Qi,et al.  Incorporating multiple SVMs for automatic image annotation , 2007, Pattern Recognit..

[45]  Raimondo Schettini,et al.  Image annotation using SVM , 2003, IS&T/SPIE Electronic Imaging.

[46]  Xing Xu,et al.  Latent topic model for image annotation by modeling topic correlation , 2013, 2013 IEEE International Conference on Multimedia and Expo (ICME).

[47]  Matthieu Guillaumin Exploiting Multimodal Data for Image Understanding , 2010 .

[48]  Ramesh Nallapati,et al.  Labeled LDA: A supervised topic model for credit attribution in multi-labeled corpora , 2009, EMNLP.

[49]  Chih-Jen Lin,et al.  Probability Estimates for Multi-class Classification by Pairwise Coupling , 2003, J. Mach. Learn. Res..

[50]  Tat-Seng Chua,et al.  Automatic image annotation via local multi-label classification , 2008, CIVR '08.

[51]  Wei-Ying Ma,et al.  An adaptive graph model for automatic image annotation , 2006, MIR '06.

[52]  Remo Guidieri Res , 1995, RES: Anthropology and Aesthetics.

[53]  Jianping Fan,et al.  Multi-Kernel Multi-Label Learning with Max-Margin Concept Network , 2011, IJCAI.

[54]  Bin Wu,et al.  Community detection in large-scale social networks , 2007, WebKDD/SNA-KDD '07.

[55]  Patrick Haffner,et al.  Support vector machines for histogram-based image classification , 1999, IEEE Trans. Neural Networks.

[56]  Jianping Fan,et al.  Hierarchical classification for automatic image annotation , 2007, SIGIR.

[57]  Xueming Qian,et al.  Tagging photos using users' vocabularies , 2013, Neurocomputing.

[58]  Qi Tian,et al.  Image Annotation by Input–Output Structural Grouping Sparsity , 2012, IEEE Transactions on Image Processing.

[59]  Stefan Carlsson,et al.  CNN Features Off-the-Shelf: An Astounding Baseline for Recognition , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition Workshops.