A New Model for the Effect of Calcium Sulfate Scale Formation on Pool Boiling Heat Transfer

Scale deposition on the heat transfer surfaces from water containing dissolved sails considerably reduces fuel economy and performance of heat transfer equipment. This problem is more serious during nucleate boiling due to the mechanisms of bubble formation and detachment. Using a precision pool boiling test apparatus, the effects of heat flux and calcium sulfate concentration on heat transfer coefficient and formation and growth of deposits flip investigated. The transient change in heat transfer is closely related to wick boiling, and the associated changes in bubble departure diameter and bubble site density. A physically sound prediction model was developed for the prediction of heat transfer coefficients as a function of time during deposition processes

[1]  S. H. Najibi,et al.  Calcium Carbonate Scale Formation During Subcooled Flow Boiling , 1997 .

[2]  Hans Müller-Steinhagen,et al.  Calcium sulphate scale formation during subcooled flow boiling , 1997 .

[3]  Hans Müller-Steinhagen,et al.  Boiling and Nonboiling Heat Transfer to Electrolyte Solutions , 1996 .

[4]  H. Mori,et al.  CRYSTALLIZATION FOULING OF CALCIUM SULFATE DIHYDRATE ON HEAT-TRANSFER SURFACES , 1996 .

[5]  H. Müller-Steinhagen,et al.  Scale Formation During Nucleate Boiling - A Review , 1993 .

[6]  H. Steinhagen Fouling : The Ultimate Challenge for Heat Exchanger Design , 1993 .

[7]  Hans Müller-Steinhagen,et al.  Pool boiling heat transfer to electrolyte solutions , 1990 .

[8]  Hans Müller-Steinhagen,et al.  Bubble Dynamics and Scale Formation during Boiling of Aqueous Calcium Sulphate Solutions , 1989 .

[9]  E. Schlunder Heat transfer in nucleate boiling of mixtures , 1983 .

[10]  W. L. Marshall,et al.  AQUEOUS SYSTEMS AT HIGH TEMPERATURE. XI. EFFECT OF PRESSURE ON LIQUID- LIQUID IMMISCIBILITY IN THE SYSTEM UO$sub 2$SO$sub 4$-H$sub 2$O AND LIQUID-SUPERCRITICAL FLUID EQUILIBRIA IN THE SYSTEM UO$sub 2$SO$sub 4$-H$sub 2$SO$sub 4$-H$sub 2$O 290-430 C, 75-330 BARS , 1963 .

[11]  W. R. V. Wijk,et al.  Heat transfer to boiling binary liquid mixtures , 1956 .

[12]  J. Moghadasi Particle movement and scale formation in porous media , 2002 .

[13]  D. Gorenflo State of the art in pool boiling heat transfer of new refrigerants , 2001 .

[14]  U. Wenzel,et al.  INFLUENCE OF PROCESS CONDITIONS ON SUBCOOLED FLOW BOILING HEAT TRANSFER TO MIXTURES , 1992 .

[15]  E. F. C. Somerscales,et al.  Account for fouling in heat exchanger design , 1991 .

[16]  James M. Chenoweth,et al.  General Design of Heat Exchangers for Fouling Conditions , 1988 .

[17]  D. Schmitt Heat transfer in boiling of multicomponent mixtures , 1987 .

[18]  M. Bohnet,et al.  Fouling of heat transfer surfaces , 1987 .

[19]  S. Krause Neuere Untersuchungen zum Fouling von Wärmeübertragungsflächen durch Sedimentbildung und Kristallisation , 1986 .

[20]  Karl Stephan,et al.  Wärmeübergang und maximale Wärmestromdichte beim Behältersieden binärer und ternärer Flüssigkeitsgemische , 1979 .

[21]  W. L. Marshall,et al.  Aqueous Systems at High Temperatures XIV. Solubility and Thermodynamic Relationships for CaSO4 in NaCl-H2O Solutions from 40 to 200 C., 0 to 4 Molal NaCl. , 1964 .