Eigenvalues and Singular Values of Products of Rectangular Gaussian Random Matrices: The Extended Version

We consider a product of an arbitrary number of independent rectangular Gaussian random matrices. We derive the mean densities of its eigenvalues and singular values in the thermodynamic limit, eventually verified numerically. These densities are encoded in the form of the so called M-transforms, for which polynomial equations are found. We exploit the methods of planar diagrammatics, enhanced to the non-Hermitian case, and free random variables, respectively; both are described in the appendices. As particular results of these two main equations, we find the singular behavior of the spectral densities near zero. Moreover, we propose a finite-size form of the spectral density of the product close to the border of its eigenvalues' domain. Also, led by the striking similarity between the two main equations, we put forward a conjecture about a simple relationship between the eigenvalues and singular values of any non-Hermitian random matrix whose spectrum exhibits rotational symmetry around zero.

[1]  A. Crisanti,et al.  Products of random matrices in statistical physics , 1993 .

[2]  Yan V. Fyodorov Recent Perspectives in Random Matrix Theory and Number Theory: Introduction to the random matrix theory: Gaussian Unitary Ensemble and beyond , 2005 .

[3]  T. Guhr,et al.  RANDOM-MATRIX THEORIES IN QUANTUM PHYSICS : COMMON CONCEPTS , 1997, cond-mat/9707301.

[4]  Antonia Maria Tulino,et al.  Random Matrix Theory and Wireless Communications , 2004, Found. Trends Commun. Inf. Theory.

[5]  M. Nowak,et al.  Large-Nc confinement and turbulence. , 2008, Physical Review Letters.

[6]  Ion Nechita,et al.  Random graph states, maximal flow and Fuss–Catalan distributions , 2010, 1003.3075.

[7]  T. Wettig,et al.  Possible large-N transitions for complex Wilson loop matrices , 2008, 0810.1058.

[8]  H. Sommers,et al.  Non-Hermitian Random Matrix Ensembles , 2009, 0911.5645.

[9]  Maciej A. Nowak,et al.  Random Hermitian versus random non-Hermitian operators—unexpected links , 2006 .

[10]  J. Verbaarschot,et al.  The supersymmetric method in random matrix theory and applications to QCD , 2004 .

[11]  C. Tracy,et al.  Introduction to Random Matrices , 1992, hep-th/9210073.

[12]  G. Hooft A Planar Diagram Theory for Strong Interactions , 1974 .

[13]  R. Speicher Multiplicative functions on the lattice of non-crossing partitions and free convolution , 1994 .

[14]  Z. Burda,et al.  Spectrum of the product of independent random Gaussian matrices. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[15]  P. Forrester Log-Gases and Random Matrices , 2010 .

[16]  R. Narayanan,et al.  Universality of large N phase transitions in Wilson loop operators in two and three dimensions , 2007, 0711.4551.

[17]  P. J. Forrester,et al.  Exact statistical properties of the zeros of complex random polynomials , 1999 .

[18]  Anne Boutet de Monvel,et al.  Some Elementary Results around the Wigner Semicircle Law , 2001 .

[19]  P. Di Francesco,et al.  2D gravity and random matrices , 1993 .

[20]  Emre Telatar,et al.  Capacity of Multi-antenna Gaussian Channels , 1999, Eur. Trans. Telecommun..

[21]  M. Nowak,et al.  Green's functions in non-hermitian random matrix models☆ , 1999, cond-mat/9909085.

[22]  Z. Burda,et al.  Eigenvalues and singular values of products of rectangular gaussian random matrices. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[23]  Teodor Banica,et al.  Free Bessel Laws , 2007, Canadian Journal of Mathematics.

[24]  H. Caswell Matrix population models : construction, analysis, and interpretation , 2001 .

[25]  B. Mehlig,et al.  EIGENVECTOR STATISTICS IN NON-HERMITIAN RANDOM MATRIX ENSEMBLES , 1998 .

[26]  J. Ginibre Statistical Ensembles of Complex, Quaternion, and Real Matrices , 1965 .

[27]  A Novel Approach to Non-Hermitian Random Matrix Models , 2004, math-ph/0402057.

[28]  Addition of Free Unitary Random Matrices , 2004, math-ph/0408019.

[29]  Towards non-Hermitian random levy matrices , 2007 .

[30]  Exact replica treatment of non-Hermitean complex random matrices , 2003, cond-mat/0312006.

[31]  2D QUANTUM GRAVITY,MATRIX MODELS AND GRAPH COMBINATORICS , 2004, math-ph/0406013.

[32]  V. Girko Spectral theory of random matrices , 1985 .

[33]  Jerzy Jurkiewicz,et al.  Infinite products of large random matrices and matrix-valued diffusion , 2003 .

[34]  F. Benaych-Georges,et al.  On a surprising relation between the Marchenko-Pastur law, rectangular and square free convolutions , 2008, 0808.3938.

[35]  C. Bordenave,et al.  The circular law , 2012 .

[36]  Maciej A. Nowak,et al.  Non-Hermitian random matrix models: Free random variable approach , 1997 .

[37]  C. Beenakker Random-matrix theory of quantum transport , 1996, cond-mat/9612179.

[38]  B. Lautrup,et al.  Products of random matrices. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[39]  Maciej A. Nowak,et al.  Non-hermitian random matrix models , 1996, cond-mat/9612240.

[40]  A. Zee,et al.  Renormalizing rectangles and other topics in random matrix theory , 1996, cond-mat/9609190.

[41]  V. Freilikher,et al.  REVIEWS OF TOPICAL PROBLEMS: Localization and wave propagation in randomly layered media , 1990 .

[42]  Drew Armstrong,et al.  Generalized Noncrossing Partitions and Combinatorics of Coxeter Groups , 2006, math/0611106.

[43]  Ralf R. Müller,et al.  On the asymptotic eigenvalue distribution of concatenated vector-valued fading channels , 2002, IEEE Trans. Inf. Theory.