A novel fractional-order hyperchaotic system stabilization via fractional sliding-mode control

In this paper we numerically investigate the fractional-order sliding-mode control for a novel fractional-order hyperchaotic system. Firstly, the dynamic analysis approaches of the hyperchaotic system involving phase portraits, Lyapunov exponents, bifurcation diagram, Lyapunov dimension, and Poincaré maps are investigated. Then the fractional-order generalizations of the chaotic and hyperchaotic systems are studied briefly. The minimum orders we found for chaos and hyperchaos to exist in such systems are 2.89 and 3.66, respectively. Finally, the fractional-order sliding-mode controller is designed to control the fractional-order hyperchaotic system. Numerical experimental examples are shown to verify the theoretical results.

[1]  Jerzy T. Sawicki,et al.  Nonlinear Vibrations of Fractionally Damped Systems , 1998 .

[2]  M. Haeri,et al.  Synchronization of chaotic fractional-order systems via active sliding mode controller , 2008 .

[3]  Xiaomei Yan,et al.  Modified projective synchronization of fractional-order chaotic systems based on active sliding mode control , 2013, 2013 25th Chinese Control and Decision Conference (CCDC).

[4]  Jinde Cao,et al.  Adaptive synchronization of uncertain dynamical networks with delayed coupling , 2008 .

[5]  Da Lin,et al.  CONTROLLING THE UNCERTAIN MULTI-SCROLL CRITICAL CHAOTIC SYSTEM WITH INPUT NONLINEAR USING SLIDING MODE CONTROL , 2009 .

[6]  Chongxin Liu,et al.  A new chaotic attractor , 2004 .

[7]  Derong Liu,et al.  Adaptive Dynamic Programming for Control: Algorithms and Stability , 2012 .

[8]  Mohammad Saleh Tavazoei,et al.  A necessary condition for double scroll attractor existence in fractional-order systems , 2007 .

[9]  O. Agrawal A General Formulation and Solution Scheme for Fractional Optimal Control Problems , 2004 .

[10]  Xingyuan Wang,et al.  The least channel capacity for chaos synchronization. , 2011, Chaos.

[11]  O. Agrawal Solution for a Fractional Diffusion-Wave Equation Defined in a Bounded Domain , 2002 .

[12]  Shouming Zhong,et al.  Design of sliding mode controller for a class of fractional-order chaotic systems , 2012 .

[13]  I. Podlubny,et al.  Analogue Realizations of Fractional-Order Controllers , 2002 .

[14]  Alain Oustaloup,et al.  From fractal robustness to the CRONE control , 1999 .

[15]  Vicente Feliú Batlle,et al.  Fractional order control strategies for power electronic buck converters , 2006, Signal Process..

[16]  Sara Dadras,et al.  Control of a fractional-order economical system via sliding mode , 2010 .

[17]  Y. Q. Chen,et al.  Using Fractional Order Adjustment Rules and Fractional Order Reference Models in Model-Reference Adaptive Control , 2002 .

[18]  J. A. Tenreiro Machado,et al.  Describing Function Analysis of Mechanical Systems with Nonlinear Friction and Backlash Phenomena , 2003 .

[19]  J. A. Tenreiro Machado,et al.  New Trends in Nanotechnology and Fractional Calculus Applications , 2010 .

[20]  Wu Aiguo,et al.  A novel sliding mode nonlinear proportional-integral control scheme for controlling chaos , 2005 .

[21]  Da Lin,et al.  Observer-based decentralized fuzzy neural sliding mode control for interconnected unknown chaotic systems via network structure adaptation , 2010, Fuzzy Sets Syst..

[22]  Xavier Moreau,et al.  The CRONE Suspension , 1996 .

[23]  C. F. Lorenzo,et al.  Chaos in a fractional order Chua's system , 1995 .

[24]  Liu Chong-Xin,et al.  A new butterfly-shaped attractor of Lorenz-like system , 2006 .

[25]  Huaguang Zhang,et al.  Controlling Chaos: Suppression, Synchronization and Chaotification , 2009 .

[26]  王发强,et al.  Hyperchaos evolved from the Liu chaotic system , 2006 .

[27]  T. Chai,et al.  Adaptive synchronization between two different chaotic systems with unknown parameters , 2006 .

[28]  Yangquan Chen,et al.  Computers and Mathematics with Applications an Approximate Method for Numerically Solving Fractional Order Optimal Control Problems of General Form Optimal Control Time-optimal Control Fractional Calculus Fractional Order Optimal Control Fractional Dynamic Systems Riots_95 Optimal Control Toolbox , 2022 .

[29]  N. Ford,et al.  A Predictor-Corrector Approach for the Numerical Solution of Fractional Differential Equations , 2013 .

[30]  Alessandro Pisano,et al.  Sliding mode control approaches to the robust regulation of linear multivariable fractional‐order dynamics , 2010 .

[31]  Mehmet Önder Efe,et al.  Fractional Order Sliding Mode Controller Design for Fractional Order Dynamic Systems , 2010 .

[32]  Guanrong Chen,et al.  A note on the fractional-order Chen system , 2006 .

[33]  Luis E. Suarez,et al.  A Comparison of Numerical Methods Applied to a Fractional Model of Damping Materials , 1999 .

[34]  Chunguang Li,et al.  Chaos and hyperchaos in the fractional-order Rössler equations , 2004 .

[35]  杨宁宁,et al.  A hyperchaotic system stabilization via inverse optimal control and experimental research , 2010 .

[36]  M. Nakagawa,et al.  Basic Characteristics of a Fractance Device , 1992 .

[37]  S. M. Lee,et al.  Secure communication based on chaotic synchronization via interval time-varying delay feedback control , 2011 .

[38]  Jesús Picó,et al.  Stability preserving maps for finite-time convergence: Super-twisting sliding-mode algorithm , 2013, Autom..

[39]  Xing-yuan Wang,et al.  Chaos synchronization for a class of nonequivalent systems with restrictive inputs via time-varying sliding mode , 2011 .

[40]  Samir Ladaci,et al.  On Fractional Adaptive Control , 2006 .

[41]  Julien Clinton Sprott,et al.  Chaos in fractional-order autonomous nonlinear systems , 2003 .

[42]  Ming Liu,et al.  SLIDING MODE CONTROL OF LORENZ SYSTEM WITH MULTIPLE INPUTS CONTAINING SECTOR NONLINEARITIES AND DEAD ZONE , 2008 .

[43]  Hasan Komurcugil,et al.  Non-singular terminal sliding-mode control of DC–DC buck converters , 2013 .

[44]  I. Podlubny Fractional differential equations , 1998 .

[45]  J. A. Tenreiro Machado,et al.  Describing Function Analysis of Systems with Impacts and Backlash , 2002 .