Reliability of InAs/GaAs Quantum Dot Lasers Epitaxially Grown on Silicon

We present the first reliability study of InAs/GaAs self-assembled quantum dot lasers epitaxially grown on Ge/Si substrates. Some devices maintain lasing oscillation after more than 2700 h of constant current stress at 30 °C, longer than any previous life tests of GaAs lasers epitaxially grown on silicon. No catastrophic failures were observed. The lasers were characterized to gain insight on the aging mechanism.

[1]  J. David,et al.  Dark current mechanisms in quantum dot laser structures , 2011 .

[2]  Lionel C. Kimerling,et al.  Recombination enhanced defect reactions , 1978 .

[3]  M. Umeno,et al.  Realization of GaAs/AlGaAs Lasers on Si Substrates Using Epitaxial Lateral Overgrowth by Metalorganic Chemical Vapor Deposition , 2001 .

[4]  Taizo Masuda,et al.  InGaAs/GaAs quantum well lasers grown on exact GaP/Si (001) , 2014 .

[5]  Alwyn J. Seeds,et al.  1.3-μm InAs/GaAs quantum-dot laser monolithically grown on Si Substrates operating over 100°C , 2014 .

[6]  M. Hopkinson,et al.  Correlation between defect density and current leakage in InAs∕GaAs quantum dot-in-well structures , 2009 .

[7]  John E. Bowers,et al.  High performance continuous wave 1.3 μm quantum dot lasers on silicon , 2014 .

[8]  S. Sakai,et al.  Monolithic III-V light-emitting devices on Si substrates , 1994 .

[9]  P. Petroff,et al.  Rapid degradation phenomenon in heterojunction GaAlAs-GaAs lasers , 1974 .

[10]  Di Liang,et al.  Reliability of Hybrid Silicon Distributed Feedback Lasers , 2013, IEEE Journal of Selected Topics in Quantum Electronics.

[11]  R. Dupuis,et al.  Degradation of GaAs lasers grown by metalorganic chemical vapor deposition on Si substrates , 1987 .

[12]  Andrew G. Glen,et al.  APPL , 2001 .

[13]  James J. Coleman,et al.  Characterization of InGaAs‐GaAs strained‐layer lasers with quantum wells near the critical thickness , 1989 .

[14]  P. Petroff,et al.  Defect structure introduced during operation of heterojunction GaAs lasers , 1973 .

[15]  David A. B. Miller,et al.  Device Requirements for Optical Interconnects to Silicon Chips , 2009, Proceedings of the IEEE.

[16]  J. Dow,et al.  Role of dangling bonds and antisite defects in rapid and gradual III‐V laser degradation , 1982 .

[17]  Jasprit Singh,et al.  Semiconductor Device Physics and Design , 2007 .

[18]  Jean-Michel Gérard,et al.  InAs quantum boxes: Highly efficient radiative traps for light emitting devices on Si , 1996 .

[19]  Takashi Jimbo,et al.  Effects of Dislocation and Stress on Characteristics of GaAs-Based Laser Grown on Si by Metalorganic Chemical Vapor Deposition , 1992 .

[20]  H. Choi,et al.  GaAs‐based diode lasers on Si with increased lifetime obtained by using strained InGaAs active layer , 1991 .

[21]  Qin Han,et al.  High-power and long-lifetime InAs/GaAs quantum-dot laser at 1080 nm , 2001 .

[22]  P. Goodhew,et al.  A mechanism of misfit dislocation reaction for GaInAs strained layers grown onto off-axis GaAs substrates , 1991 .

[23]  Mitsuru Sugawara,et al.  Long-wavelength quantum dot FP and DFB lasers for high temperature applications , 2012, OPTO.

[24]  Rajeev J. Ram,et al.  Improved room-temperature continuous wave GaAs/AlGaAs and InGaAs/GaAs/AlGaAs lasers fabricated on Si substrates via relaxed graded GexSi1−x buffer layers , 2003 .

[25]  Jia-Sheng Huang,et al.  Temperature and current dependences of reliability degradation of buried heterostructure semiconductor lasers , 2005 .

[26]  Stephen J. Pearton,et al.  Materials and reliability handbook for semiconductor optical and electron devices , 2013 .

[27]  M. Umeno,et al.  Influences of Dark Line Defects on Characteristics of AlGaAs/GaAs Quantum Well Lasers Grown on Si Substrates , 1995 .

[28]  Alwyn J. Seeds,et al.  1.3-mu m InAs/GaAs quantum-dot lasers monolithically grown on Si substrates , 2011 .

[29]  John E. Bowers,et al.  MBE growth of P-doped 1.3 μm InAs quantum dot lasers on silicon , 2014 .

[30]  Alwyn Seeds,et al.  Continuous-wave InAs/GaAs quantum-dot laser diodes monolithically grown on Si substrate with low threshold current densities. , 2012, Optics express.

[31]  I. Marko,et al.  Effect of non-pinned carrier density above threshold in inAs quantum dot and quantum dash lasers , 2014 .

[32]  Takeo Kageyama,et al.  Molecular beam epitaxial growths of high-optical-gain InAs quantum dots on GaAs for long-wavelength emission , 2013 .

[33]  David T. D. Childs,et al.  Structural analysis of life tested 1.3 μm quantum dot lasers , 2008 .