KnitUI: Fabricating Interactive and Sensing Textiles with Machine Knitting

With the recent interest in wearable electronics and smart garments, digital fabrication of sensing and interactive textiles is in increasing demand. Recently, advances in digital machine knitting offer opportunities for the programmable, rapid fabrication of soft, breathable textiles. In this paper, we present KnitUI, a novel, accessible machine-knitted user interface based on resistive pressure sensing. Employing conductive yarns and various machine knitting techniques, we computationally design and automatically fabricate the double-layered resistive sensing structures as well as the coupled conductive connection traces with minimal manual post-processing. We present an interactive design interface for users to customize KnitUI’s colors, sizes, positions, and shapes. After investigating design parameters for the optimized sensing and interactive performance, we demonstrate KnitUI as a portable, deformable, washable, and customizable interactive and sensing platform. It obtains diverse applications, including wearable user interfaces, tactile sensing wearables, and artificial robot skin.

[1]  Jan Meyer,et al.  Design and Modeling of a Textile Pressure Sensor for Sitting Posture Classification , 2010, IEEE Sensors Journal.

[2]  Alessandro Chiolerio,et al.  Wearable Electronics and Smart Textiles: A Critical Review , 2014, Sensors.

[3]  Vladlen Koltun,et al.  An Empirical Evaluation of Generic Convolutional and Recurrent Networks for Sequence Modeling , 2018, ArXiv.

[4]  M. Dickey,et al.  Self-Folding Origami Microstrip Antennas , 2014, IEEE Transactions on Antennas and Propagation.

[5]  P. Hartvigsen The Computer for the 21st Century (1991) , 2014 .

[6]  Jessica K. Hodgins,et al.  KnitPicking Textures: Programming and Modifying Complex Knitted Textures for Machine and Hand Knitting , 2019, UIST.

[7]  Alex Olwal,et al.  proCover: Sensory Augmentation of Prosthetic Limbs Using Smart Textile Covers , 2016, UIST.

[8]  Ming-Chun Huang,et al.  eCushion: A Textile Pressure Sensor Array Design and Calibration for Sitting Posture Analysis , 2013, IEEE Sensors Journal.

[9]  Ali Shokoufandeh,et al.  Toward Accurate Sensing with Knitted Fabric: Technical Considerations and Application Potential , 2020 .

[10]  Xing-Dong Yang,et al.  ThreadSense: Locating Touch on an Extremely Thin Interactive Thread , 2020, CHI.

[11]  Samuel B. Williams,et al.  ASSOCIATION FOR COMPUTING MACHINERY , 2000 .

[12]  Ivan Poupyrev,et al.  Project Jacquard: Interactive Digital Textiles at Scale , 2016, CHI.

[13]  Chelsea Knittel,et al.  Development of a Carbon Fiber Knitted Capacitive Touch Sensor , 2016 .

[14]  Michael Haller,et al.  Embroidered Resistive Pressure Sensors: A Novel Approach for Textile Interfaces , 2020, CHI.

[15]  James H. Aylor,et al.  Computer for the 21st Century , 1999, Computer.

[16]  Vidya Narayanan,et al.  Efficient transfer planning for flat knitting , 2018 .

[17]  J Underwood The design of 3D shape knitted preforms , 2009 .

[18]  Daniele Panozzo,et al.  Stitch meshing , 2018, ACM Trans. Graph..

[19]  Roberto Guerrieri,et al.  A textile based capacitive pressure sensor , 2002, Proceedings of IEEE Sensors.

[20]  Lining Yao,et al.  Digital Fabrication of Soft Actuated Objects by Machine Knitting , 2019, CHI.

[21]  Steve Marschner,et al.  Stitch meshes for modeling knitted clothing with yarn-level detail , 2012, ACM Trans. Graph..

[22]  Jessica K. Hodgins,et al.  Automatic Machine Knitting of 3D Meshes , 2018, ACM Trans. Graph..

[23]  Jan O. Borchers,et al.  Grabbing at an angle: menu selection for fabric interfaces , 2016, SEMWEB.

[24]  Sung-Hoon Ahn,et al.  Blooming Knit Flowers: Loop‐Linked Soft Morphing Structures for Soft Robotics , 2017, Advanced materials.

[25]  IshiiHiroshi,et al.  SensorKnit: Architecting Textile Sensors with Machine Knitting , 2019, 3D Printing and Additive Manufacturing.

[26]  Majid Sarrafzadeh,et al.  Computing with uncertainty in a smart textile surface for object recognition , 2010, 2010 IEEE Conference on Multisensor Fusion and Integration.

[27]  Kui Wu,et al.  Visual knitting machine programming , 2019, ACM Trans. Graph..

[28]  Kui Wu,et al.  Knittable Stitch Meshes , 2019, ACM Trans. Graph..

[29]  Hui-Shyong Yeo,et al.  Project Zanzibar: A Portable and Flexible Tangible Interaction Platform , 2018, CHI.

[30]  Wojciech Matusik,et al.  A compiler for 3D machine knitting , 2016, ACM Trans. Graph..

[31]  Wojciech Matusik,et al.  Knitting Skeletons: A Computer-Aided Design Tool for Shaping and Patterning of Knitted Garments , 2019, UIST.

[32]  Shuhai Jia,et al.  Coaxial carbon nanotube/polymer fibers as wearable piezoresistive sensors , 2018, Sensors and Actuators A: Physical.

[33]  Michael Haller,et al.  RESi: A Highly Flexible, Pressure-Sensitive, Imperceptible Textile Interface Based on Resistive Yarns , 2018, UIST.

[34]  Michael Haller,et al.  Knitted RESi: A Highly Flexible, Force-Sensitive Knitted Textile Based on Resistive Yarns , 2020, SIGGRAPH Emerging Technologies.

[35]  Jan O. Borchers,et al.  Sketch&Stitch: Interactive Embroidery for E-textiles , 2018, CHI.

[36]  Joshua R. Smith,et al.  Musical jacket , 1998, SIGGRAPH '98.

[37]  Alex Olwal,et al.  SmartSleeve: Real-time Sensing of Surface and Deformation Gestures on Flexible, Interactive Textiles, using a Hybrid Gesture Detection Pipeline , 2017, UIST.

[38]  Stefan Schneegaß,et al.  GestureSleeve: using touch sensitive fabrics for gestural input on the forearm for controlling smartwatches , 2016, SEMWEB.

[39]  Teddy Seyed,et al.  Tessutivo: Contextual Interactions on Interactive Fabrics with Inductive Sensing , 2019, UIST.

[40]  Tommaso D'Alessio,et al.  Measurement errors in the scanning of piezoresistive sensors arrays , 1999 .

[41]  Takuya Maekawa,et al.  Recognizing Handheld Electrical Device Usage with Hand-Worn Coil of Wire , 2012, Pervasive.

[42]  Xin Yang,et al.  Indutivo: Contact-Based, Object-Driven Interactions with Inductive Sensing , 2018, UIST.

[43]  Raimund Dachselt,et al.  Rapid Iron-On User Interfaces: Hands-on Fabrication of Interactive Textile Prototypes , 2020, CHI.

[44]  Paul Strohmeier,et al.  PolySense: Augmenting Textiles with Electrical Functionality using In-Situ Polymerization , 2020, CHI.

[45]  Conor J. Walsh,et al.  A Highly Sensitive Capacitive‐Based Soft Pressure Sensor Based on a Conductive Fabric and a Microporous Dielectric Layer , 2018 .

[46]  Carson I. Tucker,et al.  A tailored, electronic textile conformable suit for large-scale spatiotemporal physiological sensing in vivo , 2020, npj Flexible Electronics.

[47]  Frank C. Walsh,et al.  Review—The Development of Wearable Polymer-Based Sensors: Perspectives , 2020, Journal of The Electrochemical Society.