Relational and Fine-Grained Argument Mining

In our project ReMLAV , funded within the DFG Priority Program RATIO ( http://www.spp-ratio.de/ ), we focus on relational and fine-grained argument mining. In this article, we first introduce the problems we address and then summarize related work. The main part of the article describes our research on argument mining, both coarse-grained and fine-grained methods, and on same-side stance classification, a relational approach to the problem of stance classification. We conclude with an outlook.

[1]  Iryna Gurevych,et al.  ArgumenText: Searching for Arguments in Heterogeneous Sources , 2018, NAACL.

[2]  Thomas Seidl,et al.  TACAM: Topic And Context Aware Argument Mining , 2019, 2019 IEEE/WIC/ACM International Conference on Web Intelligence (WI).

[3]  Douglas Walton,et al.  Argument Mining by Applying Argumentation Schemes , 2012 .

[4]  Diane J. Litman,et al.  Extracting Argument and Domain Words for Identifying Argument Components in Texts , 2015, ArgMining@HLT-NAACL.

[5]  Xinyu Hua,et al.  Understanding and Detecting Supporting Arguments of Diverse Types , 2017 .

[6]  Iryna Gurevych,et al.  What is the Essence of a Claim? Cross-Domain Claim Identification , 2017, EMNLP.

[7]  Alec Radford,et al.  Improving Language Understanding by Generative Pre-Training , 2018 .

[8]  Iryna Gurevych,et al.  Identifying Argumentative Discourse Structures in Persuasive Essays , 2014, EMNLP.

[9]  Ilya Sutskever,et al.  Language Models are Unsupervised Multitask Learners , 2019 .

[10]  Iryna Gurevych,et al.  Cross-topic Argument Mining from Heterogeneous Sources , 2018, EMNLP.

[11]  Karin Baier,et al.  The Uses Of Argument , 2016 .

[12]  Jürgen Schmidhuber,et al.  Long Short-Term Memory , 1997, Neural Computation.

[13]  Marie-Francine Moens,et al.  Argumentation mining: the detection, classification and structure of arguments in text , 2009, ICAIL.

[14]  Jeffrey Dean,et al.  Efficient Estimation of Word Representations in Vector Space , 2013, ICLR.

[15]  Praveen Paritosh,et al.  Freebase: a collaboratively created graph database for structuring human knowledge , 2008, SIGMOD Conference.

[16]  Iryna Gurevych,et al.  Fine-Grained Argument Unit Recognition and Classification , 2019, AAAI.

[17]  Jens Lehmann,et al.  DBpedia: A Nucleus for a Web of Open Data , 2007, ISWC/ASWC.

[18]  Benno Stein,et al.  Building an Argument Search Engine for the Web , 2017, ArgMining@EMNLP.

[19]  Hans-Peter Kriegel,et al.  A Three-Way Model for Collective Learning on Multi-Relational Data , 2011, ICML.

[20]  Diane J. Litman,et al.  Context-aware Argumentative Relation Mining , 2016, ACL.

[21]  Evgeniy Gabrilovich,et al.  A Review of Relational Machine Learning for Knowledge Graphs , 2015, Proceedings of the IEEE.

[22]  Iryna Gurevych,et al.  Parsing Argumentation Structures in Persuasive Essays , 2016, CL.

[23]  Gerhard Weikum,et al.  WWW 2007 / Track: Semantic Web Session: Ontologies ABSTRACT YAGO: A Core of Semantic Knowledge , 2022 .

[24]  Ming-Wei Chang,et al.  BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding , 2019, NAACL.

[25]  Larry P. Heck,et al.  Contextual LSTM (CLSTM) models for Large scale NLP tasks , 2016, ArXiv.

[26]  Quoc V. Le,et al.  Semi-supervised Sequence Learning , 2015, NIPS.

[27]  Jeffrey Pennington,et al.  GloVe: Global Vectors for Word Representation , 2014, EMNLP.

[28]  Luke S. Zettlemoyer,et al.  Deep Contextualized Word Representations , 2018, NAACL.

[29]  Tomas Mikolov,et al.  Enriching Word Vectors with Subword Information , 2016, TACL.

[30]  James B. Freeman,et al.  Argument Structure: Representation and Theory , 2011, Argumentation Library.

[31]  Iryna Gurevych,et al.  Argumentation Mining in User-Generated Web Discourse , 2016, CL.

[32]  Iryna Gurevych,et al.  Cross-topic Argument Mining from Heterogeneous Sources Using Attention-based Neural Networks , 2018, ArXiv.

[33]  Roland Vollgraf,et al.  FLAIR: An Easy-to-Use Framework for State-of-the-Art NLP , 2019, NAACL.