Fully dynamic all-pairs shortest paths with worst-case update-time revisited

We revisit the classic problem of dynamically maintaining shortest paths between all pairs of nodes of a directed weighted graph. The allowed updates are insertions and deletions of nodes and their incident edges. We give worst-case guarantees on the time needed to process a single update (in contrast to related results, the update time is not amortized over a sequence of updates). Our main result is a simple randomized algorithm that for any parameter c > 1 has a worst-case update time of O(cn2+2/3 log4/3 n) and answers distance queries correctly with probability 1 − 1/nc, against an adaptive online adversary if the graph contains no negative cycle. The best deterministic algorithm is by Thorup [STOC 2005] with a worst-case update time of O(n2+3/4) and assumes non-negative weights. This is the first improvement for this problem for more than a decade. Conceptually, our algorithm shows that randomization along with a more direct approach can provide better bounds.

[1]  Piotr Sankowski,et al.  Subquadratic Algorithm for Dynamic Shortest Distances , 2005, COCOON.

[2]  Donald B. Johnson,et al.  Efficient Algorithms for Shortest Paths in Sparse Networks , 1977, J. ACM.

[3]  Monika Henzinger,et al.  Dynamic Approximate All-Pairs Shortest Paths: Breaking the O(mn) Barrier and Derandomization , 2013, 2013 IEEE 54th Annual Symposium on Foundations of Computer Science.

[4]  Robert E. Tarjan,et al.  Dynamic trees as search trees via euler tours, applied to the network simplex algorithm , 1997, Math. Program..

[5]  Piotr Sankowski,et al.  Dynamic Transitive Closure via Dynamic Matrix Inverse , 2004 .

[6]  Giuseppe F. Italiano,et al.  Incremental algorithms for minimal length paths , 1991, SODA '90.

[7]  Aaron Bernstein,et al.  Fully Dynamic (2 + epsilon) Approximate All-Pairs Shortest Paths with Fast Query and Close to Linear Update Time , 2009, 2009 50th Annual IEEE Symposium on Foundations of Computer Science.

[8]  Valerie King,et al.  Fully dynamic algorithms for maintaining all-pairs shortest paths and transitive closure in digraphs , 1999, 40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039).

[9]  Liam Roditty,et al.  Improved dynamic algorithms for maintaining approximate shortest paths under deletions , 2011, SODA '11.

[10]  Mihalis Yannakakis,et al.  High-probability parallel transitive closure algorithms , 1990, SPAA '90.

[11]  Mikkel Thorup,et al.  Worst-case update times for fully-dynamic all-pairs shortest paths , 2005, STOC '05.

[12]  Ittai Abraham,et al.  Fully Dynamic All-Pairs Shortest Paths: Breaking the O(n) Barrier , 2014, APPROX-RANDOM.

[13]  Ittai Abraham,et al.  Fully dynamic approximate distance oracles for planar graphs via forbidden-set distance labels , 2012, STOC '12.

[14]  Aaron Bernstein Maintaining Shortest Paths Under Deletions in Weighted Directed Graphs , 2016, SIAM J. Comput..

[15]  Ryan Williams,et al.  Faster all-pairs shortest paths via circuit complexity , 2013, STOC.

[16]  Satish Rao,et al.  Planar graphs, negative weight edges, shortest paths, and near linear time , 2006, J. Comput. Syst. Sci..

[17]  Monika Henzinger,et al.  Sublinear-time decremental algorithms for single-source reachability and shortest paths on directed graphs , 2014, STOC.

[18]  Philip N. Klein,et al.  A Fully Dynamic Approximation Scheme for Shortest Paths in Planar Graphs , 1998, Algorithmica.

[19]  Shimon Even,et al.  An On-Line Edge-Deletion Problem , 1981, JACM.

[20]  Allan Borodin,et al.  On the power of randomization in on-line algorithms , 2005, Algorithmica.

[21]  Uri Zwick,et al.  All pairs shortest paths using bridging sets and rectangular matrix multiplication , 2000, JACM.

[22]  Robert E. Tarjan,et al.  Self-adjusting top trees , 2005, SODA '05.

[23]  Ramesh Hariharan,et al.  Maintaining all-pairs approximate shortest paths under deletion of edges , 2003, SODA '03.

[24]  François Le Gall,et al.  Faster Algorithms for Rectangular Matrix Multiplication , 2012, 2012 IEEE 53rd Annual Symposium on Foundations of Computer Science.

[25]  Erin W. Chambers,et al.  Multiple-Source Shortest Paths in Embedded Graphs , 2012, SIAM J. Comput..

[26]  Giuseppe F. Italiano,et al.  Fully dynamic all pairs shortest paths with real edge weights , 2001, Proceedings 2001 IEEE International Conference on Cluster Computing.

[27]  Uri Zwick,et al.  Dynamic approximate all-pairs shortest paths in undirected graphs , 2004, 45th Annual IEEE Symposium on Foundations of Computer Science.

[28]  Ramesh Hariharan,et al.  Improved decremental algorithms for maintaining transitive closure and all-pairs shortest paths , 2007, J. Algorithms.

[29]  Shiri Chechik,et al.  Deterministic decremental single source shortest paths: beyond the o(mn) bound , 2016, STOC.

[30]  Ittai Abraham,et al.  Dynamic Decremental Approximate Distance Oracles with (1+ε, 2) stretch , 2013, ArXiv.

[31]  Timothy M. Chan,et al.  Deterministic APSP, Orthogonal Vectors, and More: Quickly Derandomizing Razborov-Smolensky , 2016, SODA.

[32]  Giuseppe F. Italiano,et al.  A new approach to dynamic all pairs shortest paths , 2003, STOC '03.

[33]  Monika Henzinger,et al.  Maintaining Minimum Spanning Forests in Dynamic Graphs , 2001, SIAM J. Comput..

[34]  Philip N. Klein,et al.  Faster Shortest-Path Algorithms for Planar Graphs , 1997, J. Comput. Syst. Sci..

[35]  Mikkel Thorup,et al.  Fully-Dynamic All-Pairs Shortest Paths: Faster and Allowing Negative Cycles , 2004, SWAT.

[36]  Mark H. Overmars,et al.  A balanced search tree with O(1) worst-case update time , 1988, Acta Informatica.