暂无分享,去创建一个
Ittai Abraham | Shiri Chechik | Sebastian Krinninger | Ittai Abraham | S. Krinninger | S. Chechik | Sebastian Krinninger
[1] Piotr Sankowski,et al. Subquadratic Algorithm for Dynamic Shortest Distances , 2005, COCOON.
[2] Donald B. Johnson,et al. Efficient Algorithms for Shortest Paths in Sparse Networks , 1977, J. ACM.
[3] Monika Henzinger,et al. Dynamic Approximate All-Pairs Shortest Paths: Breaking the O(mn) Barrier and Derandomization , 2013, 2013 IEEE 54th Annual Symposium on Foundations of Computer Science.
[4] Robert E. Tarjan,et al. Dynamic trees as search trees via euler tours, applied to the network simplex algorithm , 1997, Math. Program..
[5] Piotr Sankowski,et al. Dynamic Transitive Closure via Dynamic Matrix Inverse , 2004 .
[6] Giuseppe F. Italiano,et al. Incremental algorithms for minimal length paths , 1991, SODA '90.
[7] Aaron Bernstein,et al. Fully Dynamic (2 + epsilon) Approximate All-Pairs Shortest Paths with Fast Query and Close to Linear Update Time , 2009, 2009 50th Annual IEEE Symposium on Foundations of Computer Science.
[8] Valerie King,et al. Fully dynamic algorithms for maintaining all-pairs shortest paths and transitive closure in digraphs , 1999, 40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039).
[9] Liam Roditty,et al. Improved dynamic algorithms for maintaining approximate shortest paths under deletions , 2011, SODA '11.
[10] Mihalis Yannakakis,et al. High-probability parallel transitive closure algorithms , 1990, SPAA '90.
[11] Mikkel Thorup,et al. Worst-case update times for fully-dynamic all-pairs shortest paths , 2005, STOC '05.
[12] Ittai Abraham,et al. Fully Dynamic All-Pairs Shortest Paths: Breaking the O(n) Barrier , 2014, APPROX-RANDOM.
[13] Ittai Abraham,et al. Fully dynamic approximate distance oracles for planar graphs via forbidden-set distance labels , 2012, STOC '12.
[14] Aaron Bernstein. Maintaining Shortest Paths Under Deletions in Weighted Directed Graphs , 2016, SIAM J. Comput..
[15] Ryan Williams,et al. Faster all-pairs shortest paths via circuit complexity , 2013, STOC.
[16] Satish Rao,et al. Planar graphs, negative weight edges, shortest paths, and near linear time , 2006, J. Comput. Syst. Sci..
[17] Monika Henzinger,et al. Sublinear-time decremental algorithms for single-source reachability and shortest paths on directed graphs , 2014, STOC.
[18] Philip N. Klein,et al. A Fully Dynamic Approximation Scheme for Shortest Paths in Planar Graphs , 1998, Algorithmica.
[19] Shimon Even,et al. An On-Line Edge-Deletion Problem , 1981, JACM.
[20] Allan Borodin,et al. On the power of randomization in on-line algorithms , 2005, Algorithmica.
[21] Uri Zwick,et al. All pairs shortest paths using bridging sets and rectangular matrix multiplication , 2000, JACM.
[22] Robert E. Tarjan,et al. Self-adjusting top trees , 2005, SODA '05.
[23] Ramesh Hariharan,et al. Maintaining all-pairs approximate shortest paths under deletion of edges , 2003, SODA '03.
[24] François Le Gall,et al. Faster Algorithms for Rectangular Matrix Multiplication , 2012, 2012 IEEE 53rd Annual Symposium on Foundations of Computer Science.
[25] Erin W. Chambers,et al. Multiple-Source Shortest Paths in Embedded Graphs , 2012, SIAM J. Comput..
[26] Giuseppe F. Italiano,et al. Fully dynamic all pairs shortest paths with real edge weights , 2001, Proceedings 2001 IEEE International Conference on Cluster Computing.
[27] Uri Zwick,et al. Dynamic approximate all-pairs shortest paths in undirected graphs , 2004, 45th Annual IEEE Symposium on Foundations of Computer Science.
[28] Ramesh Hariharan,et al. Improved decremental algorithms for maintaining transitive closure and all-pairs shortest paths , 2007, J. Algorithms.
[29] Shiri Chechik,et al. Deterministic decremental single source shortest paths: beyond the o(mn) bound , 2016, STOC.
[30] Ittai Abraham,et al. Dynamic Decremental Approximate Distance Oracles with (1+ε, 2) stretch , 2013, ArXiv.
[31] Timothy M. Chan,et al. Deterministic APSP, Orthogonal Vectors, and More: Quickly Derandomizing Razborov-Smolensky , 2016, SODA.
[32] Giuseppe F. Italiano,et al. A new approach to dynamic all pairs shortest paths , 2003, STOC '03.
[33] Monika Henzinger,et al. Maintaining Minimum Spanning Forests in Dynamic Graphs , 2001, SIAM J. Comput..
[34] Philip N. Klein,et al. Faster Shortest-Path Algorithms for Planar Graphs , 1997, J. Comput. Syst. Sci..
[35] Mikkel Thorup,et al. Fully-Dynamic All-Pairs Shortest Paths: Faster and Allowing Negative Cycles , 2004, SWAT.
[36] Mark H. Overmars,et al. A balanced search tree with O(1) worst-case update time , 1988, Acta Informatica.