Preliminary specificity study of the Bestel-Clément-Sorine electromechanical model of the heart using parameter calibration from medical images.

Patient-specific cardiac modelling can help in understanding pathophysiology and predict therapy effects. This requires the personalization of the geometry, kinematics, electrophysiology and mechanics. We use the Bestel-Clément-Sorine (BCS) electromechanical model of the heart, which provides reasonable accuracy with a reduced parameter number compared to the available clinical data at the organ level. We propose a preliminary specificity study to determine the relevant global parameters able to differentiate the pathological cases from the healthy controls. To this end, a calibration algorithm on global measurements is developed. This calibration method was tested successfully on 6 volunteers and 2 heart failure cases and enabled to tune up to 7 out of the 14 necessary parameters of the BCS model, from the volume and pressure curves. This specificity study confirmed domain-knowledge that the relaxation rate is impaired in post-myocardial infarction heart failure and the myocardial stiffness is increased in dilated cardiomyopathy heart failures.

[1]  Rudolph van der Merwe,et al.  The unscented Kalman filter for nonlinear estimation , 2000, Proceedings of the IEEE 2000 Adaptive Systems for Signal Processing, Communications, and Control Symposium (Cat. No.00EX373).

[2]  Alistair A. Young,et al.  Modelling passive diastolic mechanics with quantitative MRI of cardiac structure and function , 2009, Medical Image Anal..

[3]  Gerhard A Holzapfel,et al.  Constitutive modelling of passive myocardium: a structurally based framework for material characterization , 2009, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[4]  Hervé Delingette,et al.  An Anisotropic Multi-front Fast Marching Method for Real-Time Simulation of Cardiac Electrophysiology , 2007, FIMH.

[5]  Jack Lee,et al.  Myocardial transversely isotropic material parameter estimation from in-silico measurements based on a reduced-order unscented Kalman filter. , 2011, Journal of the mechanical behavior of biomedical materials.

[6]  N. Stergiopulos,et al.  Total arterial inertance as the fourth element of the windkessel model. , 1999, American journal of physiology. Heart and circulatory physiology.

[7]  Hervé Delingette,et al.  Personalization of Cardiac Motion and Contractility From Images Using Variational Data Assimilation , 2012, IEEE Transactions on Biomedical Engineering.

[8]  A. McCulloch,et al.  Modelling cardiac mechanical properties in three dimensions , 2001, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[9]  Alejandro F. Frangi,et al.  GIMIAS: An Open Source Framework for Efficient Development of Research Tools and Clinical Prototypes , 2009, FIMH.

[10]  Frank B. Sachse,et al.  Computational Cardiology , 2004, Lecture Notes in Computer Science.

[11]  Frédérique Clément,et al.  A Biomechanical Model of Muscle Contraction , 2001, MICCAI.

[12]  D. Chapelle,et al.  Reduced-order Unscented Kalman Filtering with application to parameter identification in large-dimensional systems , 2011 .

[13]  Martyn P. Nash,et al.  Mechanics and material properties of the heart using an anatomically accurate mathematical model. , 1998 .

[14]  Andrew D. McCulloch,et al.  Effect of Laminar Orthotropic Myofiber Architecture on Regional Stress and Strain in the Canine Left Ventricle , 2000 .

[15]  S B Knoebel,et al.  Prolongation of proton spin lattice relaxation times in regionally ischemic tissue from dog hearts. , 1980, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[16]  Hervé Delingette,et al.  A Computational Framework for the Statistical Analysis of Cardiac Diffusion Tensors: Application to a Small Database of Canine Hearts , 2007, IEEE Transactions on Medical Imaging.

[17]  J. Humphrey,et al.  Determination of a constitutive relation for passive myocardium: I. A new functional form. , 1990, Journal of biomechanical engineering.

[18]  Hervé Delingette,et al.  Statistical Analysis of the Human Cardiac Fiber Architecture from DT-MRI , 2011, FIMH.

[19]  D. Chapelle,et al.  MODELING AND ESTIMATION OF THE CARDIAC ELECTROMECHANICAL ACTIVITY , 2006 .

[20]  R. Klabunde,et al.  Comprar Cardiovascular Physiology Concepts | Richard E. Klabunde | 9781451113846 | Lippincott Williams & Wilkins , 2011 .

[21]  R. Klabunde Cardiovascular Physiology Concepts , 2021 .

[22]  Hervé Delingette,et al.  International Journal of Computer Vision Manuscript No. 10.1007/s11263-010-0405-z The final publication is available at www.springerlink.com iLogDemons: A Demons-Based Registration Algorithm for Tracking Incompressible Elastic Biological Tissues , 2022 .

[23]  Hervé Delingette,et al.  Cardiac Mechanical Parameter Calibration Based on the Unscented Transform , 2012, MICCAI.

[24]  Maxime Sermesant,et al.  An Incompressible Log-Domain Demons Algorithm for Tracking Heart Tissue , 2011, STACOM.

[25]  P Rizzon,et al.  Functional and structural abnormalities in patients with dilated cardiomyopathy. , 1989, Journal of the American College of Cardiology.

[26]  Reza Razavi,et al.  A Simultaneous X-Ray/MRI and Noncontact Mapping Study of the Acute Hemodynamic Effect of Left Ventricular Endocardial and Epicardial Cardiac Resynchronization Therapy in Humans , 2011, Circulation. Heart failure.

[27]  Hervé Delingette,et al.  Patient-specific Electromechanical Models of the Heart for the Prediction of Pacing Acute Effects in Crt: a Preliminary Clinical Validation , 2022 .

[28]  Frank B. Sachse,et al.  Computational Cardiology , 2004, Lecture Notes in Computer Science.

[29]  F. G. YOUNG Progress in Biophysics and Biophysical Chemistry , 1956, Nature.

[30]  A. Huxley Muscle structure and theories of contraction. , 1957, Progress in biophysics and biophysical chemistry.

[31]  Alejandro F. Frangi,et al.  A Multimodal Database for the 1 st Cardiac Motion Analysis Challenge , 2011, STACOM.

[32]  Huafeng Liu,et al.  Simulation of Active Cardiac Electromechanical Dynamics , 2008, MIAR.

[33]  Kawal S. Rhode,et al.  A system for real-time XMR guided cardiovascular intervention , 2005, IEEE Transactions on Medical Imaging.

[34]  Hervé Delingette,et al.  An electromechanical model of the heart for image analysis and simulation , 2006, IEEE Transactions on Medical Imaging.

[35]  Hervé Delingette,et al.  Noname manuscript No. (will be inserted by the editor) Fast Parameter Calibration of a Cardiac Electromechanical Model from Medical Images based on the Unscented Transform , 2012 .

[36]  Jeffrey K. Uhlmann,et al.  New extension of the Kalman filter to nonlinear systems , 1997, Defense, Security, and Sensing.

[37]  P. Tallec,et al.  An energy-preserving muscle tissue model: formulation and compatible discretizations , 2012 .

[38]  Radomir Chabiniok,et al.  Personalized Biomechanical Heart Modeling for Clinical Applications , 2011 .

[39]  Michel Sorine,et al.  Solutions to muscle fiber equations and their long time behaviour , 2006 .

[40]  Hervé Delingette,et al.  Coupled personalization of cardiac electrophysiology models for prediction of ischaemic ventricular tachycardia , 2011, Interface Focus.

[41]  P Moireau,et al.  Estimation of tissue contractility from cardiac cine-MRI using a biomechanical heart model , 2012, Biomechanics and modeling in mechanobiology.

[42]  Olivier Ecabert,et al.  Segmentation of the heart and great vessels in CT images using a model-based adaptation framework , 2011, Medical Image Anal..

[43]  Huafeng Liu,et al.  Maximum a Posteriori Strategy for the Simultaneous Motion and Material Property Estimation of the Heart , 2009, IEEE Transactions on Biomedical Engineering.

[44]  Christos Davatzikos,et al.  Biomechanically-Constrained 4D Estimation of Myocardial Motion , 2009, MICCAI.

[45]  Maxime Sermesant,et al.  In vivo Human 3D Cardiac Fibre Architecture: Reconstruction Using Curvilinear Interpolation of Diffusion Tensor Images , 2010, MICCAI.