Some numerical algorithms to evaluate Hadamard finite-part integrals
暂无分享,去创建一个
[1] Giovanni Monegato,et al. Numerical evaluation of hypersingular integrals , 1994 .
[2] I. Gopengauz. A theorem of A. F. Timan on the approximation of functions by polynomials on a finite segment , 1967 .
[3] G. Mastroianni. Uniform convergence of derivatives of Lagrange interpolation , 1992 .
[4] David Elliott,et al. An algorithm for the numerical evaluation of certain Cauchy principal value integrals , 1972 .
[5] P. Nevai,et al. Mean convergence of derivatives of Lagrange interpolation , 1991 .
[6] V. Totik,et al. Moduli of smoothness , 1987 .
[7] G. P. Névai,et al. Mean convergence of Lagrange interpolation, II☆ , 1976 .
[8] D. F. Paget,et al. The numerical evaluation of Hadamard finite-part integrals , 1981 .
[9] G. Mastroianni,et al. Interlacing properties of the zeros of the orthogonal polynomials and approximation of the Hilbert transform , 1995 .
[10] Giuseppe Mastroianni,et al. On the uniform convergence of Gaussian quadrature rules for Cauchy principal value integrals , 1989 .
[11] Giuseppe Mastroianni,et al. Convergence of extended Lagrange interpolation , 1990 .
[12] Giuseppe Mastroianni,et al. Uniform convergence of derivatives of extended Lagrange interpolation , 1991 .
[13] George J. Tsamasphyros,et al. Gauss quadrature rules for finite part integrals , 1990 .
[14] Walter Gautschi,et al. Computing the Hilbert transform of a Jacobi weight function , 1987 .
[15] G. Criscuolo,et al. Convergenza di formule gaussiane per il calcolo delle derivate di integrali A valor principale secondo Cauchy , 1987 .
[16] L. Schumaker. Spline Functions: Basic Theory , 1981 .