The hyper-Wiener index of graph operations

Let G be a graph. The distance d(u,v) between the vertices u and v of the graph G is equal to the length of a shortest path that connects u and v. The Wiener index W(G) is the sum of all distances between vertices of G, whereas the hyper-Wiener index WW(G) is defined as WW(G)=12W(G)[email protected]?"{"u","v"}"@?"V"("G")d(u,v)^2. In this paper the hyper-Wiener indices of the Cartesian product, composition, join and disjunction of graphs are computed. We apply some of our results to compute the hyper-Wiener index of C"4 nanotubes, C"4 nanotori and q-multi-walled polyhex nanotori.

[1]  Ali Reza Ashrafi,et al.  Vertex and edge PI indices of Cartesian product graphs , 2008, Discret. Appl. Math..

[2]  P. Khadikar,et al.  ON A NOVEL STRUCTURAL DE- SCRIPTOR PI , 2000 .

[3]  Ali Reza Ashrafi,et al.  The PI index of product graphs , 2008, Appl. Math. Lett..

[4]  Ali Reza Ashrafi,et al.  A matrix method for computing Szeged and vertex PI indices of join and composition of graphs , 2008 .

[5]  István Lukovits,et al.  On the Definition of the Hyper-Wiener Index for Cycle-Containing Structures , 1995, J. Chem. Inf. Comput. Sci..

[6]  A. R. Ashrafi,et al.  Padmakar-Ivan Index of q-Multi-Walled Carbon Nanotubesand Nanotori , 2008 .

[7]  Bo Zhou,et al.  Relations between Wiener, hyper-Wiener and Zagreb indices , 2004 .

[8]  Sandi Klavzar,et al.  A theorem on Wiener-type invariants for isometric subgraphs of hypercubes , 2006, Appl. Math. Lett..

[9]  Ivan Gutman,et al.  A PROPERTY OF THE WIENER NUMBER AND ITS MODIFICATIONS , 1997 .

[10]  Sandi Klavzar,et al.  An Algorithm for the Calculation of the Hyper-Wiener Index of Benzenoid Hydrocarbons , 2000, Comput. Chem..

[11]  A. Ashrafi,et al.  PI INDEX OF ZIG-ZAG POLYHEX NANOTUBES , 2006 .

[12]  I. Gutman Relation between hyper-Wiener and Wiener index , 2002 .

[13]  W. Imrich,et al.  Product Graphs: Structure and Recognition , 2000 .

[14]  H. Wiener Structural determination of paraffin boiling points. , 1947, Journal of the American Chemical Society.

[15]  Gordon G. Cash,et al.  Relationship between the Hosoya polynomial and the hyper-Wiener index , 2002, Appl. Math. Lett..

[16]  Yeong-Nan Yeh,et al.  The Wiener polynomial of a graph , 1998, math/9801011.

[17]  S. Yousefi,et al.  An exact expression for the Wiener index of a polyhex nanotorus , 2007 .

[18]  I. Gutman,et al.  Wiener Index of Trees: Theory and Applications , 2001 .

[19]  Ali Reza Ashrafi,et al.  The first and second Zagreb indices of some graph operations , 2009, Discret. Appl. Math..

[20]  M. Diudea,et al.  Molecular topology , 1995 .

[21]  Sandi Klavžar,et al.  The Szeged and the Wiener Index of Graphs , 1996 .

[22]  I. Gutman,et al.  Wiener Index of Hexagonal Systems , 2002 .

[23]  N. Trinajstic Chemical Graph Theory , 1992 .

[24]  Gordon G. Cash Polynomial Expressions for the Hyper-Wiener Index of Extended Hydrocarbon Networks , 2001, Comput. Chem..

[25]  Nina S. Schmuck The Wiener index of a graph , 2010 .

[26]  M. H. Khalifeh,et al.  The Edge Szeged Index of Product Graphs , 2008 .

[27]  A. Jalbout,et al.  Bond order weighted hyper-Wiener index , 2003 .