A primal-dual trust region algorithm for nonlinear optimization
暂无分享,去创建一个
[1] M. Uddin. Atomic Energy Research Establishment , 1948 .
[2] M. Powell. A method for nonlinear constraints in minimization problems , 1969 .
[3] J. Bunch,et al. Direct Methods for Solving Symmetric Indefinite Systems of Linear Equations , 1971 .
[4] C. Reinsch. Smoothing by spline functions. II , 1971 .
[5] M. D. Hebden,et al. An algorithm for minimization using exact second derivatives , 1973 .
[6] J. J. Moré,et al. A Characterization of Superlinear Convergence and its Application to Quasi-Newton Methods , 1973 .
[7] J. Bunch,et al. Some stable methods for calculating inertia and solving symmetric linear systems , 1977 .
[8] S. W. Thomas. Sequential estimation techniques for quasi-newton algorithms. , 1975 .
[9] M. Powell. CONVERGENCE PROPERTIES OF A CLASS OF MINIMIZATION ALGORITHMS , 1975 .
[10] J. H. Wilkinson,et al. AN ESTIMATE FOR THE CONDITION NUMBER OF A MATRIX , 1979 .
[11] Danny C. Sorensen,et al. On the use of directions of negative curvature in a modified newton method , 1979, Math. Program..
[12] Klaus Schittkowski,et al. Test examples for nonlinear programming codes , 1980 .
[13] David M. author-Gay. Computing Optimal Locally Constrained Steps , 1981 .
[14] Klaus Schittkowski,et al. More test examples for nonlinear programming codes , 1981 .
[15] Philip E. Gill,et al. Practical optimization , 1981 .
[16] D. Sorensen. Newton's method with a model trust region modification , 1982 .
[17] Jorge J. Moré,et al. Computing a Trust Region Step , 1983 .
[18] N. Gould. On the Accurate Determination of Search Directions for Simple Differentiable Penalty Functions , 1986 .
[19] R. Fletcher. Practical Methods of Optimization , 1988 .
[20] Nicholas J. Higham,et al. FORTRAN codes for estimating the one-norm of a real or complex matrix, with applications to condition estimation , 1988, TOMS.
[21] N. Higham. Analysis of the Cholesky Decomposition of a Semi-definite Matrix , 1990 .
[22] E. Omojokun. Trust region algorithms for optimization with nonlinear equality and inequality constraints , 1990 .
[23] P. Gill,et al. Solving Reduced KKT Systems in Barrier Methods for Linear and Quadratic Programming , 1991 .
[24] D. Ponceleón. Barrier methods for large-scale quadratic programming , 1991 .
[25] Margaret H. Wright,et al. Interior methods for constrained optimization , 1992, Acta Numerica.
[26] Yin Zhang,et al. On the Superlinear and Quadratic Convergence of Primal-Dual Interior Point Linear Programming Algorithms , 1992, SIAM J. Optim..
[27] Sanjay Mehrotra,et al. Solving symmetric indefinite systems in an interior-point method for linear programming , 1993, Math. Program..
[28] Yin Zhang,et al. A Superlinearly Convergent Polynomial Primal-Dual Interior-Point Algorithm for Linear Programming , 1993, SIAM J. Optim..
[29] W. Murray,et al. Newton methods for large-scale linear equality-constrained minimization , 1993 .
[30] Brian W. Kernighan,et al. AMPL: A Modeling Language for Mathematical Programming , 1993 .
[31] Yin Zhang,et al. On the Superlinear Convergence of Interior-Point Algorithms for a General Class of Problems , 1993, SIAM J. Optim..
[32] Anders Forsgren,et al. Computing Modified Newton Directions Using a Partial Cholesky Factorization , 1995, SIAM J. Sci. Comput..
[33] Stephen J. Wright. Stability of Linear Equations Solvers in Interior-Point Methods , 1995, SIAM J. Matrix Anal. Appl..
[34] Nicholas I. M. Gould,et al. CUTE: constrained and unconstrained testing environment , 1995, TOMS.
[35] L. N. Vicente,et al. Trust-Region Interior-Point SQP Algorithms for a Class of Nonlinear Programming Problems , 1998 .
[36] T. Tsuchiya,et al. On the formulation and theory of the Newton interior-point method for nonlinear programming , 1996 .
[37] Joseph R. Shinnerl,et al. Stability of Symmetric Ill-Conditioned Systems Arising in Interior Methods for Constrained Optimization , 1996, SIAM J. Matrix Anal. Appl..
[38] Stephen J. Wright. Primal-Dual Interior-Point Methods , 1997, Other Titles in Applied Mathematics.
[39] Michael L. Overton,et al. A Primal-dual Interior Method for Nonconvex Nonlinear Programming , 1998 .
[40] Anders Forsgren,et al. Primal-Dual Interior Methods for Nonconvex Nonlinear Programming , 1998, SIAM J. Optim..
[41] Margaret H. Wright,et al. Ill-Conditioning and Computational Error in Interior Methods for Nonlinear Programming , 1998, SIAM J. Optim..
[42] Robert J. Vanderbei,et al. An Interior-Point Algorithm for Nonconvex Nonlinear Programming , 1999, Comput. Optim. Appl..
[43] P. Gill,et al. Combination trust-region line-search methods for unconstrained optimization , 1999 .
[44] Jorge Nocedal,et al. An Interior Point Algorithm for Large-Scale Nonlinear Programming , 1999, SIAM J. Optim..
[45] Jorge J. Moré,et al. COPS: Large-scale nonlinearly constrained optimization problems , 2000 .
[46] Hande Y. Benson,et al. INTERIOR-POINT METHODS FOR NONCONVEX NONLINEAR PROGRAMMING: JAMMING AND COMPARATIVE NUMERICAL TESTING , 2000 .
[47] Robert J. Vanderbei,et al. Interior-point methods for nonconvex nonlinear programming: orderings and higher-order methods , 2000, Math. Program..
[48] Jorge Nocedal,et al. A trust region method based on interior point techniques for nonlinear programming , 2000, Math. Program..
[49] P. Toint,et al. A primal-dual algorithm for minimizing a non-convex function subject to bound and linear equality constraints , 2000 .
[50] Nicholas I. M. Gould,et al. A primal-dual trust-region algorithm for non-convex nonlinear programming , 2000, Math. Program..
[51] Nicholas I. M. Gould,et al. Superlinear Convergence of Primal-Dual Interior Point Algorithms for Nonlinear Programming , 2000, SIAM J. Optim..
[52] Todd Munson,et al. Benchmarking optimization software with COPS. , 2001 .
[53] D K Smith,et al. Numerical Optimization , 2001, J. Oper. Res. Soc..
[54] Jorge J. Moré,et al. Benchmarking optimization software with COPS. , 2001 .
[55] R. Tapia,et al. On the Global Convergence of a Modified Augmented Lagrangian Linesearch Interior-Point Newton Method for Nonlinear Programming , 2002 .
[56] Robert J. Vanderbei,et al. Interior-Point Methods for Nonconvex Nonlinear Programming: Filter Methods and Merit Functions , 2002, Comput. Optim. Appl..
[57] Anders Forsgren,et al. Interior Methods for Nonlinear Optimization , 2002, SIAM Rev..
[58] Sven Leyffer,et al. Nonlinear programming without a penalty function , 2002, Math. Program..
[59] Jorge J. Moré,et al. Digital Object Identifier (DOI) 10.1007/s101070100263 , 2001 .
[60] A. Forsgren. Inertia-controlling factorizations for optimization algorithms , 2002 .
[61] Stephen J. Wright,et al. Properties of the Log-Barrier Function on Degenerate Nonlinear Programs , 2002, Math. Oper. Res..
[62] ArgáezM.,et al. On the global convergence of a modified augmented Lagrangian linesearch interior-point Newton method for nonlinear programming , 2002 .
[63] Javier M. Moguerza,et al. An augmented Lagrangian interior-point method using directions of negative curvature , 2003, Math. Program..
[64] Stefan Ulbrich,et al. A globally convergent primal-dual interior-point filter method for nonlinear programming , 2004, Math. Program..
[65] Aaas News,et al. Book Reviews , 1893, Buffalo Medical and Surgical Journal.