Dynamic stability of a rotor blade using finite element analysis

The aeroelastic stability of flap bending, lead-lag bending, and torsion of a helicopter rotor blade in hover is examined using a finite element formulation based on the principle of virtual work. Quasi-steady two-dimensional airfoil theory is used to obtain the aerodynamic loads. The rotor blade is discretized into beam elements, each with ten modal degrees of freedom. The resulting nonlinear equations of motion are solved for steady-state blade deflections through an iterative procedure. The flutter solution is calculated assuming blade motion to be a small perturbation about the steady solution. The normal mode method based on the coupled rotating natural modes about the steady deflections is used to reduce the number of equations in the flutter eigenanalysis. Results are presented for hingeless and articulated rotor blade configurations.