A 13-Bit 260MS/s Power-Efficient Pipeline ADC Using a Current-Reuse Technique and Interstage Gain and Nonlinearity Errors Calibration

A pipeline analog-to-digital converter (ADC) with high power efficiency is implemented in this paper. The ADC architecture consists of 3.5b, 3.5b, 3.5b, and 4b sub-ADCs. For the first three stages, a current-reuse technique is employed in the current mode multiplying digital-to-analog converters (MDACs). An operational transconductance amplifier (OTA) converts an input voltage into current; A current-steering DAC reuses the OTA bias current. The OTA and the DAC generate the sub-ADC residue in a current domain. As a result, both power consumption and thermal noise for the MDAC are reduced. A transimpedance amplifier (TIA) with a feedback resistor is utilized to convert the current signal to a voltage residue signal for the next stage. An off-chip calibration scheme is used to correct interstage gain and nonlinearity errors. The fabricated ADC achieves 68.1 dB signal-to-noise-and-distortion ratio (SNDR) and 82.3 dB spurious free dynamic range (SFDR) for a sinusoidal input at 4.17 MHz. The ADC operates at a maximum sampling frequency of 260 MHz. With an input signal at 123.129 MHz, the measured SNDR/SFDR are 66.3/78.22 dB, respectively. The total power consumption for the ADC running at maximum speed is 15.38 mW. Thus, the pipeline ADC achieves a 167.4 dB figure-of-merit (FoM). The chip was manufactured in a TSMC 40-nm CMOS process.

[1]  Behzad Razavi,et al.  A Tale of Two ADCs: Pipelined Versus SAR , 2015, IEEE Solid-State Circuits Magazine.

[2]  Rui Paulo Martins,et al.  A 10-bit 500-MS/s Partial-Interleaving Pipelined SAR ADC With Offset and Reference Mismatch Calibrations , 2017, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.

[3]  Lin He,et al.  A 240-mW 2.1-GS/s 52-dB SNDR Pipeline ADC Using MDAC Equalization , 2013, IEEE Journal of Solid-State Circuits.

[4]  Wei-Hsin Tseng,et al.  A 12-bit 104 MS/s SAR ADC in 28 nm CMOS for Digitally-Assisted Wireless Transmitters , 2016, IEEE Journal of Solid-State Circuits.

[5]  Peter R. Kinget,et al.  Current Reference Pre-Charging Techniques for Low-Power Zero-Crossing Pipeline-SAR ADCs , 2014, IEEE Journal of Solid-State Circuits.

[6]  David Smith,et al.  15.8 90dB-SFDR 14b 500MS/S BiCMOS switched-current pipelined ADC , 2015, 2015 IEEE International Solid-State Circuits Conference - (ISSCC) Digest of Technical Papers.

[7]  Byung-Geun Lee,et al.  A 10-bit 200-MS/s Zero-Crossing-Based Pipeline ADC in 0.13- $\mu $ m CMOS Technology , 2015, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.

[8]  Michael P. Flynn,et al.  A 1 mW 71.5 dB SNDR 50 MS/s 13 bit Fully Differential Ring Amplifier Based SAR-Assisted Pipeline ADC , 2015, IEEE Journal of Solid-State Circuits.

[9]  J Richardson,et al.  A Full Nyquist 15MS/s 8-bit Differential Switched-Current A/D Converter , 1995, ESSCIRC '95: Twenty-first European Solid-State Circuits Conference.

[10]  Jose Silva-Martinez,et al.  A 44-fJ/Conversion Step 200-MS/s Pipeline ADC Employing Current-Mode MDACs , 2018, IEEE Journal of Solid-State Circuits.

[11]  Yun Chiu,et al.  A Non-Interleaved 12-b 330-MS/s Pipelined-SAR ADC With PVT-Stabilized Dynamic Amplifier Achieving Sub-1-dB SNDR Variation , 2017, IEEE Journal of Solid-State Circuits.

[12]  Frank M. L. van der Goes,et al.  A 12 b 53 mW 195 MS/s Pipeline ADC with 82 dB SFDR Using Split-ADC Calibration , 2015, IEEE Journal of Solid-State Circuits.

[13]  Rui Paulo Martins,et al.  An 11b 450 MS/s Three-Way Time-Interleaved Subranging Pipelined-SAR ADC in 65 nm CMOS , 2016, IEEE Journal of Solid-State Circuits.

[14]  Akira Matsuzawa,et al.  An Ultra-Low-Voltage 160 MS/s 7 Bit Interpolated Pipeline ADC Using Dynamic Amplifiers , 2015, IEEE Journal of Solid-State Circuits.

[15]  Chun-Cheng Liu,et al.  A 10-bit 320-MS/s low-cost SAR ADC for IEEE 802.11ac applications in 20-nm CMOS , 2014, 2014 IEEE Asian Solid-State Circuits Conference (A-SSCC).

[16]  Hajime Shibata,et al.  A 9-GS/s 1.125-GHz BW Oversampling Continuous-Time Pipeline ADC Achieving −164-dBFS/Hz NSD , 2017, IEEE Journal of Solid-State Circuits.

[17]  K. Bacrania,et al.  A 10-bit 50-MS/s Pipelined ADC With Opamp Current Reuse , 2007, IEEE Journal of Solid-State Circuits.

[18]  Gabriele Manganaro,et al.  A 12-b 10-GS/s Interleaved Pipeline ADC in 28-nm CMOS Technology , 2017, IEEE Journal of Solid-State Circuits.

[19]  Scott Kaylor,et al.  A 12 Bit 1.6 GS/s BiCMOS 2×2 Hierarchical Time-Interleaved Pipeline ADC , 2014, IEEE Journal of Solid-State Circuits.

[20]  Willy Sansen,et al.  Distortion in elementary transistor circuits , 1999 .

[21]  Soon-Kyun Shin,et al.  A 12 bit 200 MS/s Zero-Crossing-Based Pipelined ADC With Early Sub-ADC Decision and Output Residue Background Calibration , 2014, IEEE Journal of Solid-State Circuits.

[22]  Michael P. Flynn,et al.  A 100 MS/s, 10.5 Bit, 2.46 mW Comparator-Less Pipeline ADC Using Self-Biased Ring Amplifiers , 2015, IEEE Journal of Solid-State Circuits.

[23]  Yue Shi,et al.  A modified particle swarm optimizer , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[24]  José Silva-Martínez,et al.  A digital-circuit-based evolutionary-computation algorithm for time-interleaved ADC background calibration , 2016, 2016 29th IEEE International System-on-Chip Conference (SOCC).

[25]  SeongHwan Cho,et al.  A 1-GS/s 9-bit Zero-Crossing-Based Pipeline ADC Using a Resistor as a Current Source , 2016, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.

[26]  Jose Silva-Martinez,et al.  A robust feedforward compensation scheme for multistage operational transconductance amplifiers with no Miller capacitors , 2003, IEEE J. Solid State Circuits.

[27]  Chih-Cheng Hsieh,et al.  A 12-bit 150-MS/s Sub-Radix-3 SAR ADC With Switching Miller Capacitance Reduction , 2018, IEEE Journal of Solid-State Circuits.

[28]  Yu-Hsuan Tu,et al.  A 12 bit 100 MS/s SAR-Assisted Digital-Slope ADC , 2016, IEEE Journal of Solid-State Circuits.