Semantic concept-based query expansion and re-ranking for multimedia retrieval

We study the problem of semantic concept-based query expansion and re-ranking for multimedia retrieval. In particular, we explore the utility of a fixed lexicon of visual semantic concepts for automatic multimedia retrieval and re-ranking purposes. In this paper, we propose several new approaches for query expansion, in which textual keywords, visual examples, or initial retrieval results are analyzed to identify the most relevant visual concepts for the given query. These concepts are then used to generate additional query results and/or to re-rank an existing set of results. We develop both lexical and statistical approaches for text query expansion, as well as content-based approaches for visual query expansion. In addition, we study several other recently proposed methods for concept-based query expansion. In total, we compare 7 different approaches for expanding queries with visual semantic concepts. They are evaluated using a large video corpus and 39 concept detectors from the TRECVID-2006 video retrieval benchmark. We observe consistent improvement over the baselines for all 7 approaches, leading to an overall performance gain of 77% relative to a text retrieval baseline, and a 31% improvement relative to a state-of-the-art multimodal retrieval baseline.

[1]  Shih-Fu Chang,et al.  Automatic discovery of query-class-dependent models for multimodal search , 2005, MULTIMEDIA '05.

[2]  John R. Smith,et al.  On the detection of semantic concepts at TRECVID , 2004, MULTIMEDIA '04.

[3]  Richard A. Harshman,et al.  Indexing by Latent Semantic Analysis , 1990, J. Am. Soc. Inf. Sci..

[4]  Milind R. Naphade,et al.  Learning the semantics of multimedia queries and concepts from a small number of examples , 2005, MULTIMEDIA '05.

[5]  Karen Sparck Jones Automatic keyword classification for information retrieval , 1971 .

[6]  Rong Yan,et al.  Learning query-class dependent weights in automatic video retrieval , 2004, MULTIMEDIA '04.

[7]  Ellen M. Voorhees,et al.  Query expansion using lexical-semantic relations , 1994, SIGIR '94.

[8]  John R. Smith,et al.  Semantic representation: search and mining of multimedia content , 2004, KDD '04.

[9]  Nuno Vasconcelos,et al.  Query by Semantic Example , 2006, CIVR.

[10]  Philip Resnik,et al.  Using Information Content to Evaluate Semantic Similarity in a Taxonomy , 1995, IJCAI.

[11]  Dong Xu,et al.  Columbia University TRECVID-2006 Video Search and High-Level Feature Extraction , 2006, TRECVID.

[12]  John Platt,et al.  Probabilistic Outputs for Support vector Machines and Comparisons to Regularized Likelihood Methods , 1999 .

[13]  W. Bruce Croft,et al.  An Association Thesaurus for Information Retrieval , 1994, RIAO.

[14]  Rong Yan,et al.  Probabilistic models for combining diverse knowledge sources in multimedia retrieval , 2006 .

[15]  John R. Smith,et al.  Large-scale concept ontology for multimedia , 2006, IEEE MultiMedia.

[16]  Ted Pedersen,et al.  Using Measures of Semantic Relatedness for Word Sense Disambiguation , 2003, CICLing.

[17]  Apostol Natsev,et al.  Dynamic Multimodal Fusion in Video Search , 2007, 2007 IEEE International Conference on Multimedia and Expo.

[18]  Carsten Peterson,et al.  A Mean Field Theory Learning Algorithm for Neural Networks , 1987, Complex Syst..

[19]  Marcel Worring,et al.  The challenge problem for automated detection of 101 semantic concepts in multimedia , 2006, MM '06.

[20]  Shih-Fu Chang,et al.  Video search reranking via information bottleneck principle , 2006, MM '06.

[21]  W. Bruce Croft,et al.  Query expansion using local and global document analysis , 1996, SIGIR '96.

[22]  John R. Smith,et al.  IBM Research TRECVID-2009 Video Retrieval System , 2009, TRECVID.

[23]  Eitan Farchi,et al.  Automatic query wefinement using lexical affinities with maximal information gain , 2002, SIGIR '02.

[24]  Milind R. Naphade,et al.  Semantic Multimedia Retrieval using Lexical Query Expansion and Model-Based Reranking , 2006, 2006 IEEE International Conference on Multimedia and Expo.

[25]  W. Bruce Croft Combining Approaches to Information Retrieval , 2002 .

[26]  Jin Zhao,et al.  Video Retrieval Using High Level Features: Exploiting Query Matching and Confidence-Based Weighting , 2006, CIVR.

[27]  Yiming Yang,et al.  A Comparative Study on Feature Selection in Text Categorization , 1997, ICML.

[28]  Sheng Tang,et al.  TRECVID 2006 by NUS-I2R , 2006, TRECVID.

[29]  Ted Pedersen,et al.  Extended Gloss Overlaps as a Measure of Semantic Relatedness , 2003, IJCAI.

[30]  Jennifer Chu-Carroll,et al.  IBM's PIQUANT II in TREC 2004 , 2004, TREC.

[31]  Jianying Wang,et al.  A corpus analysis approach for automatic query expansion , 1997, CIKM '97.

[32]  John R. Smith,et al.  Multimedia semantic indexing using model vectors , 2003, 2003 International Conference on Multimedia and Expo. ICME '03. Proceedings (Cat. No.03TH8698).

[33]  Dennis Koelma,et al.  The MediaMill TRECVID 2008 Semantic Video Search Engine , 2008, TRECVID.

[34]  Ted Dunning,et al.  Accurate Methods for the Statistics of Surprise and Coincidence , 1993, CL.

[35]  Nathalie Japkowicz,et al.  The Class Imbalance Problem: Significance and Strategies , 2000 .

[36]  Jun Yang,et al.  CMU Informedia's TRECVID 2005 Skirmishes , 2005, TRECVID.

[37]  Hinrich Schütze,et al.  A Cooccurrence-Based Thesaurus and Two Applications to Information Retrieval , 1994, Inf. Process. Manag..

[38]  John R. Smith,et al.  Cluster-based data modeling for semantic video search , 2007, CIVR '07.

[39]  R. Manmatha,et al.  A formal approach to score normalization for meta-search , 2002 .