Analytics over large-scale multidimensional data: the big data revolution!

In this paper, we provide an overview of state-of-the-art research issues and achievements in the field of analytics over big data, and we extend the discussion to analytics over big multidimensional data as well, by highlighting open problems and actual research trends. Our analytical contribution is finally completed by several novel research directions arising in this field, which plays a leading role in next-generation Data Warehousing and OLAP research.

[1]  Hakan Hacigümüs,et al.  Providing database as a service , 2002, Proceedings 18th International Conference on Data Engineering.

[2]  Sanjay Ghemawat,et al.  MapReduce: Simplified Data Processing on Large Clusters , 2004, OSDI.

[3]  Carlos Ordonez,et al.  Efficient OLAP with UDFs , 2008, DOLAP '08.

[4]  Rui Liu,et al.  Extend UDF Technology for Integrated Analytics , 2009, DaWaK.

[5]  Joseph M. Hellerstein,et al.  MAD Skills: New Analysis Practices for Big Data , 2009, Proc. VLDB Endow..

[6]  Abraham Silberschatz,et al.  HadoopDB: An Architectural Hybrid of MapReduce and DBMS Technologies for Analytical Workloads , 2009, Proc. VLDB Endow..

[7]  Vinay Setty,et al.  Hadoop++: Making a Yellow Elephant Run Like a Cheetah (Without It Even Noticing) , 2010, Proc. VLDB Endow..

[8]  Beng Chin Ooi,et al.  The performance of MapReduce , 2010, Proc. VLDB Endow..

[9]  Zheng Shao,et al.  Hive - a petabyte scale data warehouse using Hadoop , 2010, 2010 IEEE 26th International Conference on Data Engineering (ICDE 2010).

[10]  Divyakant Agrawal,et al.  Big data and cloud computing: current state and future opportunities , 2011, EDBT/ICDT '11.

[11]  Rick Cattell,et al.  Scalable SQL and NoSQL data stores , 2011, SGMD.

[12]  Liang Dong,et al.  Starfish: A Self-tuning System for Big Data Analytics , 2011, CIDR.