Compressive Hyperspectral Imaging: Fourier Transform Interferometry meets Single Pixel Camera

This paper introduces a single-pixel HyperSpectral (HS) imaging framework based on Fourier Transform Interferometry (FTI). By combining a space-time coding of the light illumination with partial interferometric observations of a collimated light beam (observed by a single pixel), our system benefits from (i) reduced measurement rate and light-exposure of the observed object compared to common (Nyquist) FTI imagers, and (ii) high spectral resolution as desirable in, e.g., Fluorescence Spectroscopy (FS). From the principles of compressive sensing with multilevel sampling, our method leverages the sparsity "in level" of FS data, both in the spectral and the spatial domains. This allows us to optimize the space-time light coding using time-modulated Hadamard patterns. We confirm the effectiveness of our approach by a few numerical experiments.

[1]  Emmanuel J. Candès,et al.  Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.

[2]  E. Candès,et al.  Sparsity and incoherence in compressive sampling , 2006, math/0611957.

[3]  E. Candès,et al.  Compressive fluorescence microscopy for biological and hyperspectral imaging , 2012, Proceedings of the National Academy of Sciences.

[4]  R. J. Bell,et al.  Introductory Fourier transform spectroscopy , 1972 .

[5]  Laurent Jacques,et al.  Compressive Hyperspectral Imaging with Fourier Transform Interferometry , 2016 .

[6]  Ben Adcock,et al.  On asymptotic structure in compressed sensing , 2014, ArXiv.

[7]  Anne E Carpenter,et al.  Annotated high-throughput microscopy image sets for validation , 2012, Nature Methods.

[8]  Ben Adcock,et al.  BREAKING THE COHERENCE BARRIER: A NEW THEORY FOR COMPRESSED SENSING , 2013, Forum of Mathematics, Sigma.

[9]  A. Moshtaghpour,et al.  A Variable Density Sampling Scheme for Compressive Fourier Transform Interferometry , 2018, SIAM J. Imaging Sci..

[10]  Emmanuel J. Candès,et al.  Near-Optimal Signal Recovery From Random Projections: Universal Encoding Strategies? , 2004, IEEE Transactions on Information Theory.

[11]  Ting Sun,et al.  Single-pixel imaging via compressive sampling , 2008, IEEE Signal Process. Mag..

[12]  Holger Rauhut,et al.  A Mathematical Introduction to Compressive Sensing , 2013, Applied and Numerical Harmonic Analysis.

[13]  Laurent Jacques,et al.  Compressive Hyperspectral Imaging using Coded Fourier Transform Interferometry , 2017 .

[14]  David L Donoho,et al.  Compressed sensing , 2006, IEEE Transactions on Information Theory.

[15]  Laurent Jacques,et al.  Multilevel Illumination Coding for Fourier Transform Interferometry in Fluorescence Spectroscopy , 2018, 2018 25th IEEE International Conference on Image Processing (ICIP).

[16]  Laurent Jacques,et al.  Coded-Illumination Fourier Transform Interferometry , 2016 .