The center function on trees

When $(X, d)$ is a finite metric space and $\pi = (x_1 , \ldots, x_k ) \in X^k$, a central element for $\pi$ is an element $x$ of $X$ for which max$\{ d(x, x_i ): i = 1 ,\ldots ,k\}$ is minimum. The function that returns the set of all central elements for any tuple $\pi$ is called the center function on $X$. In this note, the center function on finite trees is characterized.

[1]  Fred S. Roberts,et al.  The Median Procedure on Median Graphs , 1998, Discret. Appl. Math..

[2]  Jean-Pierre Barthélemy,et al.  A Formal Theory of Consensus , 1991, SIAM J. Discret. Math..

[3]  Pierre Hansen,et al.  An Impossibility Result in Axiomatic Location Theory , 1996, Math. Oper. Res..

[4]  Bernard Monjardet,et al.  The median procedure in cluster analysis and social choice theory , 1981, Math. Soc. Sci..

[5]  Fred R. McMorris,et al.  The median procedure for n-trees as a maximum likelihood method , 1990 .

[6]  Ron Holzman,et al.  An Axiomatic Approach to Location on Networks , 1990, Math. Oper. Res..

[7]  J. Barthelemy,et al.  On the use of ordered sets in problems of comparison and consensus of classifications , 1986 .

[8]  F. McMorris,et al.  The median procedure for n-trees , 1986 .

[9]  Peter J. Slater,et al.  Centers to centroids in graphs , 1978, J. Graph Theory.

[10]  Rakesh V. Vohra,et al.  An axiomatic characterization of some locations in trees , 1996 .

[11]  Bruno Leclerc,et al.  Medians for Weight Metrics in the Covering Graphs of Semilattices , 1994, Discret. Appl. Math..

[12]  Fred R. McMorris,et al.  The median function on median graphs and semilattices , 2000, Discret. Appl. Math..

[13]  G. Chartrand,et al.  Graphs & Digraphs , 1986 .

[14]  R. C. Powers,et al.  The Median Procedure in a Formal Theory of Consensus , 1995, SIAM J. Discret. Math..

[15]  Mark S. Daskin,et al.  Network and Discrete Location: Models, Algorithms and Applications , 1995 .

[16]  Bhaba R. Sarker,et al.  Discrete location theory , 1991 .

[17]  Bruno Leclerc,et al.  Lattice valuations, medians and majorities , 1993, Discret. Math..