Integrable evolution systems based on Gerdjikov-Ivanov equations, bi-Hamiltonian structure, finite-dimensional integrable systems and N-fold Darboux transformation

A spectral problem and the associated Gerdjikov–Ivanov (GI) hierarchy of nonlinear evolution equations is presented. As a reduction, the well-known GI equation of derivative nonlinear Schrodinger equations is obtained. It is shown that the GI hierarchy is integrable in a Liouville sense and possesses bi-Hamiltonian structure. Moreover, the spectral problem can be nonlinearized as a finite dimensional completely integrable system under the Bargmann constraint between the potentials and the eigenfunctions. In particular, an explicit N-fold Darboux transformation for the GI equation is constructed with the help of a gauge transformation of spectral problems and a reduction technique. Some explicit solitonlike solutions of the GI equation are given by applying its Darboux transformation.

[1]  P. Olver Applications of Lie Groups to Differential Equations , 1986 .

[2]  E. Belokolos,et al.  Algebro-geometric approach to nonlinear integrable equations , 1994 .

[3]  V. Matveev,et al.  Darboux Transformations and Solitons , 1992 .

[4]  Geng Xian-Guo,et al.  C Neumann and Bargmann systems associated with the coupled KdV soliton hierarchy , 1990 .

[5]  R. S. Johnson On the modulation of water waves in the neighbourhood of kh ≈ 1.363 , 1977, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[6]  Junkichi Satsuma,et al.  Bilinearization of a Generalized Derivative Nonlinear Schrödinger Equation , 1995 .

[7]  Franco Magri,et al.  A Simple model of the integrable Hamiltonian equation , 1978 .

[8]  Decio Levi,et al.  On a new Darboux transformation for the construction of exact solutions of the Schrodinger equation , 1988 .

[9]  Peter A. Clarkson,et al.  Exact solutions of the multidimensional derivative nonlinear Schrodinger equation for many-body systems of criticality , 1990 .

[10]  Gu Chao-hao Integrable evolution systems based on generalized self-dual Yang-Mills equations and their soliton-like solutions , 1995 .

[11]  Y. Nutku On a new class of completely integrable nonlinear wave equations. II. Multi‐Hamiltonian structure , 1987 .

[12]  I. Gel'fand,et al.  Hamiltonian operators and infinite-dimensional Lie algebras , 1981 .

[13]  Tu Gui-Zhang,et al.  On Liouville integrability of zero-curvature equations and the Yang hierarchy , 1989 .

[14]  Gu Chaohao,et al.  On Darboux transformations for soliton equations in high-dimensional spacetime , 1994 .

[15]  Yunbo Zeng,et al.  New factorization of the Kaup-Newell hierarchy , 1994 .

[16]  R. Meinel,et al.  General N-soliton solution of the AKNS class on arbitrary background , 1984 .

[17]  Yunbo Zeng Using factorization to solve soliton equations , 1997 .

[18]  Gernot Neugebauer,et al.  Einstein-Maxwell solitons , 1983 .

[19]  M. Ablowitz,et al.  Solitons, Nonlinear Evolution Equations and Inverse Scattering , 1992 .

[20]  Yuji Kodama,et al.  Optical solitons in a monomode fiber , 1985 .

[21]  Zhou Zi-xiang On the Darboux transformation for 1+2-dimensional equations , 1988 .

[22]  Leon A. Takhtajan,et al.  Hamiltonian methods in the theory of solitons , 1987 .

[23]  P. Clarkson,et al.  Painleve analysis of the non-linear Schrodinger family of equations , 1987 .

[24]  Gui‐zhang Tu,et al.  The trace identity, a powerful tool for constructing the Hamiltonian structure of integrable systems , 1989 .

[25]  A. Kundu Exact solutions to higher-order nonlinear equations through gauge transformation , 1987 .

[26]  Ruguang Zhou Lax representation, r-matrix method, and separation of variables for the Neumann-type restricted flow , 1998 .

[27]  Jan L. Cieśliński,et al.  An algebraic method to construct the Darboux matrix , 1995 .

[28]  Kiyoshi Sogo,et al.  GAUGE TRANSFORMATIONS IN SOLITON THEORY , 1983 .

[29]  David J. Kaup,et al.  An exact solution for a derivative nonlinear Schrödinger equation , 1978 .

[30]  H. H. Chen,et al.  Integrability of Nonlinear Hamiltonian Systems by Inverse Scattering Method , 1979 .

[31]  Yunbo Zeng Deriving N-soliton solutions via constrained flows , 2000, nlin/0002047.

[32]  Yunbo Zeng An approach to the deduction of the finite-dimensional integrability from the infinite-dimensional integrability , 1991 .

[33]  Xianguo Geng,et al.  Finite-band solutions of the classical Boussinesq–Burgers equations , 1999 .

[34]  P. G. Estévez Darboux transformation and solutions for an equation in 2+1 dimensions , 1999 .

[35]  Geng Xianguo Finite‐dimensional discrete systems and integrable systems through nonlinearization of the discrete eigenvalue problem , 1993 .

[36]  Anjan Kundu,et al.  Landau-Lifshitz and higher-order nonlinear systems gauge generated from nonlinear Schrödinger-type equations , 1984 .

[37]  Z. Qiao A Bargmann system and the involutive representation of solutions of the Levi hierarchy , 1993 .