Statistical Dependence of Gate Metal Work Function on Various Electrical Parameters for an n-Channel Si Step-FinFET

This paper presents a 3-D statistical simulation study of an n-channel Si step-FinFET due to work-function variability depending on grain orientation of metal gate. The statistical fluctuation induced by metal gate granularity on threshold-voltage (<inline-formula> <tex-math notation="LaTeX">$\sigma {V}_{T}$ </tex-math></inline-formula>), ON current (<inline-formula> <tex-math notation="LaTeX">$\sigma I_{ \mathrm{\scriptscriptstyle ON}}$ </tex-math></inline-formula>), and OFF current (<inline-formula> <tex-math notation="LaTeX">$\sigma {I}_{ \mathrm{\scriptscriptstyle OFF}}$ </tex-math></inline-formula>) are estimated for a wide range of channel length and effective fin width for varying average grain size using Technology Computer Aided Design simulator. We investigated the effect of grain on magnitude of variability and also on shapes of various electrical parameters of distribution. The results indicate that <inline-formula> <tex-math notation="LaTeX">$\sigma {V}_{T}$ </tex-math></inline-formula> decreases for increase in each dimension of the device. The value of <inline-formula> <tex-math notation="LaTeX">$\sigma {I}_{ \mathrm{\scriptscriptstyle ON}}$ </tex-math></inline-formula>, and <inline-formula> <tex-math notation="LaTeX">$\sigma {I}_{ \mathrm{\scriptscriptstyle OFF}}$ </tex-math></inline-formula> reduces as channel length increases. However, <inline-formula> <tex-math notation="LaTeX">$\sigma {I}_{ \mathrm{\scriptscriptstyle ON}}$ </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">$\sigma {I}_{ \mathrm{\scriptscriptstyle OFF}}$ </tex-math></inline-formula> increase as fin width increases. The distribution of electrical parameters is near to normal for small grain size and becomes bimodal at large grain size. The proposed structure shows excellent behavior in terms of threshold-voltage (<inline-formula> <tex-math notation="LaTeX">${V}_{T}$ </tex-math></inline-formula>), subthreshold swing, and current ratio (<inline-formula> <tex-math notation="LaTeX">${I}_{ \mathrm{\scriptscriptstyle ON}}/I_{ \mathrm{\scriptscriptstyle OFF}}$ </tex-math></inline-formula>) compared with conventional FinFET at high temperature. It is found that the hot carrier effect reduces with increased effective channel width.

[1]  Comparison of Gate-Metal Work Function Variability Between Ge and Si p-Channel FinFETs , 2015, IEEE Transactions on Electron Devices.

[2]  T. P. Ma,et al.  Making Silicon Nitride Film a Viable Gate Dielectric , 1998 .

[3]  Kazuhiko Endo,et al.  Grain-Orientation Induced Work Function Variation in Nanoscale Metal-Gate Transistors—Part I: Modeling, Analysis, and Experimental Validation , 2010, IEEE Transactions on Electron Devices.

[4]  Chun-Yen Chang,et al.  Fabrication, characterization and simulation of Ω-gate twin poly-Si FinFET nonvolatile memory , 2013, Nanoscale Research Letters.

[5]  O. Faynot,et al.  Multigate silicon MOSFETs for 45 nm node and beyond , 2006 .

[6]  G. Pei,et al.  FinFET design considerations based on 3-D simulation and analytical modeling , 2002 .

[7]  N. Jha,et al.  FinFETs: From Devices to Architectures , 2014 .

[8]  Random work function variation induced threshold voltage fluctuation in 16-nm bulk FinFET devices with high-k-metal-gate material , 2010, 2010 14th International Workshop on Computational Electronics.

[9]  Ram Awadh Mishra,et al.  Analytical modeling and simulation of multigate FinFET devices and the impact of high-k dielectrics on short channel effects (SCEs) , 2015 .

[10]  R. V. Overstraeten,et al.  Measurement of the ionization rates in diffused silicon p-n junctions , 1970 .

[11]  O. Faynot,et al.  3D analytical modelling of subthreshold characteristics in Pi-gate FinFET transistors , 2010, 2010 Proceedings of the European Solid State Device Research Conference.

[12]  A. Asenov,et al.  Statistical Threshold-Voltage Variability in Scaled Decananometer Bulk HKMG MOSFETs: A Full-Scale 3-D Simulation Scaling Study , 2011, IEEE Transactions on Electron Devices.

[13]  William Redman-White,et al.  Self-heating effects in SOI MOSFETs and their measurement by small signal conductance techniques , 1996 .

[14]  Srimanta Baishya,et al.  Tri-gate heterojunction SOI Ge-FinFETs , 2016 .

[15]  Yiming Li,et al.  Process-Variation Effect, Metal-Gate Work-Function Fluctuation, and Random-Dopant Fluctuation in Emerging CMOS Technologies , 2010, IEEE Transactions on Electron Devices.

[16]  Statistical simulation of metal-gate work-function fluctuation in high-κ/metal-gate devices , 2010, 2010 International Conference on Simulation of Semiconductor Processes and Devices.

[17]  A. Orouji,et al.  Partially Cylindrical Fin Field-Effect Transistor: A Novel Device for Nanoscale Applications , 2010, IEEE Transactions on Device and Materials Reliability.

[18]  K. Banerjee,et al.  Grain-Orientation Induced Work Function Variation in Nanoscale Metal-Gate Transistors—Part II: Implications for Process, Device, and Circuit Design , 2010, IEEE Transactions on Electron Devices.

[19]  A New Rounded Edge Fin Field Effect Transistor for Improving Self-Heating Effects , 2011 .

[20]  Sueng Min Lee,et al.  A comparative study on hot carrier effects in inversion-mode and junctionless MuGFETs , 2013 .

[21]  S. Datta,et al.  High mobility Si/SiGe strained channel MOS transistors with HfO/sub 2//TiN gate stack , 2003, IEEE International Electron Devices Meeting 2003.

[22]  Andrew R. Brown,et al.  Impact of Metal Gate Granularity on Threshold Voltage Variability: A Full-Scale Three-Dimensional Statistical Simulation Study , 2010, IEEE Electron Device Letters.

[23]  S. G. Chamberlain,et al.  Modeling and measurement of minority-carrier lifetime versus doping in diffused layers of n+-p silicon diodes , 1982, IEEE Transactions on Electron Devices.

[24]  Abhijit Mallik,et al.  Comparison of Random Dopant and Gate-Metal Workfunction Variability Between Junctionless and Conventional FinFETs , 2014, IEEE Electron Device Letters.

[25]  N. Balasubramanian,et al.  Three-Layer laminated metal gate electrodes with tunable work functions for CMOS applications , 2005, IEEE Electron Device Letters.

[26]  A. Orouji,et al.  A new nanoscale and high temperature field effect transistor: Bi level FinFET , 2011 .

[27]  A. Orouji,et al.  Leakage current reduction in nanoscale fully-depleted SOI MOSFETs with modified current mechanism , 2012 .

[29]  Abhijit Mallik,et al.  Effects of Device Scaling on the Performance of Junctionless FinFETs Due to Gate-Metal Work Function Variability and Random Dopant Fluctuations , 2016, IEEE Electron Device Letters.

[30]  Prasanna Kumar Sahu,et al.  Temperature dependence inflection point in Ultra-Thin Si directly on Insulator (SDOI) MOSFETs: An influence to key performance metrics , 2015 .

[31]  G. Masetti,et al.  Modeling of carrier mobility against carrier concentration in arsenic-, phosphorus-, and boron-doped silicon , 1983, IEEE Transactions on Electron Devices.

[32]  M. Armstrong,et al.  Comparison of Junctionless and Conventional Trigate Transistors With $L_{g}$ Down to 26 nm , 2011, IEEE Electron Device Letters.

[33]  Yuan Taur,et al.  Device scaling limits of Si MOSFETs and their application dependencies , 2001, Proc. IEEE.

[34]  Chenming Hu,et al.  MOSFET gate leakage modeling and selection guide for alternative gate dielectrics based on leakage considerations , 2003 .