A highly accurate boundary integral equation method for surfactant-laden drops in 3D

The presence of surfactants alters the dynamics of viscous drops immersed in an ambient viscous fluid. This is specifically true at small scales, such as in applications of droplet based microfluidics, where the interface dynamics become of increased importance. At such small scales, viscous forces dominate and inertial effects are often negligible. Considering Stokes flow, a numerical method based on a boundary integral formulation is presented for simulating 3D drops covered by an insoluble surfactant. The method is able to simulate drops with different viscosities and close interactions, automatically controlling the time step size and maintaining high accuracy also when substantial drop deformation appears. To achieve this, the drop surfaces as well as the surfactant concentration on each surface are represented by spherical harmonics expansions. A novel reparameterization method is introduced to ensure a high-quality representation of the drops also under deformation, specialized quadrature methods for singular and nearly singular integrals that appear in the formulation are evoked and the adaptive time stepping scheme for the coupled drop and surfactant evolution is designed with a preconditioned implicit treatment of the surfactant diffusion.

[1]  Zydrunas Gimbutas,et al.  A Fast Algorithm for Spherical Grid Rotations and Its Application to Singular Quadrature , 2013, SIAM J. Sci. Comput..

[2]  Anna-Karin Tornberg,et al.  Error estimation for quadrature by expansion in layer potential evaluation , 2017, Adv. Comput. Math..

[3]  Ernst Hairer,et al.  Solving Ordinary Differential Equations I: Nonstiff Problems , 2009 .

[4]  Howard A. Stone,et al.  Dynamics of Drop Deformation and Breakup in Viscous Fluids , 1994 .

[5]  Leslie Greengard,et al.  A fast multipole method for the three-dimensional Stokes equations , 2008, J. Comput. Phys..

[6]  Alexander Z. Zinchenko,et al.  A novel boundary-integral algorithm for viscous interaction of deformable drops , 1997 .

[7]  Peng Song,et al.  A diffuse-interface method for two-phase flows with soluble surfactants , 2011, J. Comput. Phys..

[8]  P. Hansbo,et al.  A cut finite element method for a Stokes interface problem , 2012, 1205.5684.

[9]  Shilpa Khatri,et al.  An embedded boundary method for soluble surfactants with interface tracking for two-phase flows , 2014, J. Comput. Phys..

[10]  D. An,et al.  The effects of surfactants on drop deformation and breakup By , 2005 .

[11]  George Biros,et al.  A fast algorithm for simulating vesicle flows in three dimensions , 2011, J. Comput. Phys..

[12]  K. Stebe,et al.  Marangoni effects on drop deformation in an extensional flow: The role of surfactant physical chemistry. I. Insoluble surfactants , 1996 .

[13]  Michael Siegel,et al.  A local target specific quadrature by expansion method for evaluation of layer potentials in 3D , 2017, J. Comput. Phys..

[14]  Christoph A. Merten,et al.  Droplet-based microfluidics in drug discovery, transcriptomics and high-throughput molecular genetics. , 2016, Lab on a chip.

[15]  T. Y. Wu,et al.  Hydromechanics of low-Reynolds-number flow. Part 2. Singularity method for Stokes flows , 1975, Journal of Fluid Mechanics.

[16]  I. Chavel Riemannian Geometry: Subject Index , 2006 .

[17]  James Bremer,et al.  On the numerical evaluation of the singular integrals of scattering theory , 2013, J. Comput. Phys..

[18]  S. Tabakova,et al.  Dynamics of Bubbles, Drops and Rigid Particles , 1998 .

[19]  K. Atkinson,et al.  Spherical Harmonics and Approximations on the Unit Sphere: An Introduction , 2012 .

[20]  K. Stebe,et al.  Marangoni Effects On Drop Deformation In AnExtensional Flow: The Role Of Surfactant PhysicalChemistry , 1970 .

[21]  M. Minion Semi-implicit spectral deferred correction methods for ordinary differential equations , 2003 .

[22]  H. Stone A simple derivation of the time‐dependent convective‐diffusion equation for surfactant transport along a deforming interface , 1990 .

[23]  Anna-Karin Tornberg,et al.  Spectrally accurate fast summation for periodic Stokes potentials , 2010, J. Comput. Phys..

[24]  Gilles Burel,et al.  Determination of the Orientation of 3D Objects Using Spherical Harmonics , 1995, CVGIP Graph. Model. Image Process..

[25]  Karl Yngve Lervåg,et al.  Sharp interface simulations of surfactant-covered drops in electric fields , 2010 .

[26]  Metin Muradoglu,et al.  A front-tracking method for computation of interfacial flows with soluble surfactants , 2008, J. Comput. Phys..

[27]  L. Mazutis,et al.  Dynamics of molecular transport by surfactants in emulsions , 2012 .

[28]  James Bremer,et al.  A Nyström method for weakly singular integral operators on surfaces , 2012, J. Comput. Phys..

[29]  M. Siegel,et al.  Analytical and Computational Methods for Two-Phase Flow with Soluble Surfactant , 2013, SIAM J. Appl. Math..

[30]  Zhilin Li,et al.  A level-set method for interfacial flows with surfactant , 2006, J. Comput. Phys..

[31]  Lexing Ying,et al.  A high-order 3D boundary integral equation solver for elliptic PDEs in smooth domains , 2006, J. Comput. Phys..

[32]  Helene Andersson-Svahn,et al.  Detection and analysis of low-abundance cell-surface biomarkers using enzymatic amplification in microfluidic droplets. , 2009, Angewandte Chemie.

[33]  Steven J. Ruuth,et al.  Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations , 1997 .

[34]  C. Pozrikidis,et al.  A Finite-volume/Boundary-element Method for Flow Past Interfaces in the Presence of Surfactants, with Application to Shear Flow Past a Viscous Drop , 1998 .

[35]  George Biros,et al.  Adaptive time stepping for vesicle suspensions , 2014, J. Comput. Phys..

[36]  Ivan G. Graham,et al.  A high-order algorithm for obstacle scattering in three dimensions , 2004 .

[37]  John E. Dennis,et al.  Numerical methods for unconstrained optimization and nonlinear equations , 1983, Prentice Hall series in computational mathematics.

[38]  Anna-Karin Tornberg,et al.  A fast integral equation method for solid particles in viscous flow using quadrature by expansion , 2016, J. Comput. Phys..

[39]  G. B. Jeffery The motion of ellipsoidal particles immersed in a viscous fluid , 1922 .

[40]  Zydrunas Gimbutas,et al.  A fast and stable method for rotating spherical harmonic expansions , 2009, J. Comput. Phys..

[41]  L. G. Leal,et al.  An experimental investigation of drop deformation and breakup in steady, two-dimensional linear flows , 1986, Journal of Fluid Mechanics.

[42]  Panagiotis Dimitrakopoulos,et al.  Interfacial dynamics in Stokes flow via a three-dimensional fully-implicit interfacial spectral boundary element algorithm , 2007, J. Comput. Phys..

[43]  Hong Zhao,et al.  A spectral boundary integral method for flowing blood cells , 2010, J. Comput. Phys..

[44]  A. Lee,et al.  Droplet microfluidics. , 2008, Lab on a chip.

[45]  Ian H. Sloan,et al.  Fully discrete spectral boundary integral methods for Helmholtz problems on smooth closed surfaces in ${\mathbb R}^3$ , 2002, Numerische Mathematik.

[46]  Martin J. Mohlenkamp A fast transform for spherical harmonics , 1997 .

[47]  Nathanaël Schaeffer,et al.  Efficient spherical harmonic transforms aimed at pseudospectral numerical simulations , 2012, ArXiv.

[48]  Steven A. Orszag,et al.  Fourier Series on Spheres , 1974 .

[49]  Ludvig af Klinteberg,et al.  Fast Ewald summation for Stokesian particle suspensions , 2014 .

[50]  Kathleen Feigl,et al.  Simulation and experiments of droplet deformation and orientation in simple shear flow with surfactants , 2007 .

[51]  L. G. Leal,et al.  Advanced Transport Phenomena: Fluid Mechanics and Convective Transport Processes , 2007 .

[52]  Y. T. Hu,et al.  Estimating surfactant surface coverage and decomposing its effect on drop deformation. , 2003, Physical review letters.

[53]  Xiaofan Li,et al.  The effect of surfactants on drop deformation and on the rheology of dilute emulsions in Stokes flow , 1997, Journal of Fluid Mechanics.

[54]  Patrick D Anderson,et al.  Numerical investigation of the effect of insoluble surfactants on drop deformation and breakup in simple shear flow. , 2006, Journal of colloid and interface science.

[55]  Anna-Karin Tornberg,et al.  Adaptive Quadrature by Expansion for Layer Potential Evaluation in Two Dimensions , 2017, SIAM J. Sci. Comput..

[56]  M. Wörner Numerical modeling of multiphase flows in microfluidics and micro process engineering: a review of methods and applications , 2012 .

[57]  Leslie Greengard,et al.  Quadrature by expansion: A new method for the evaluation of layer potentials , 2012, J. Comput. Phys..

[58]  E. Wigner,et al.  Book Reviews: Group Theory. And Its Application to the Quantum Mechanics of Atomic Spectra , 1959 .

[59]  George Biros,et al.  Boundary integral method for the flow of vesicles with viscosity contrast in three dimensions , 2015, J. Comput. Phys..

[60]  A. Tornberg,et al.  Fast Ewald summation for free-space Stokes potentials , 2016, 1607.04808.

[61]  A. Tornberg,et al.  A numerical method for two phase flows with insoluble surfactants , 2011 .

[62]  Svetlana Tlupova,et al.  Nearly Singular Integrals in 3D Stokes Flow , 2013 .

[63]  C. Pozrikidis,et al.  Boundary Integral and Singularity Methods for Linearized Viscous Flow: The boundary integral equations , 1992 .