Darwinism in quantum systems

Abstract We investigate the role of quantum mechanical effects in the central stability concept of evolutionary game theory, i.e., an evolutionarily stable strategy (ESS). Using two and three-player symmetric quantum games we show how the presence of quantum phenomenon of entanglement can be crucial to decide the course of evolutionary dynamics in a population of interacting individuals.

[1]  J. M. Smith,et al.  The Logic of Animal Conflict , 1973, Nature.

[2]  C Cannings,et al.  Evolution in knockout conflicts: The fixed strategy case , 2000, Bulletin of mathematical biology.

[3]  P. Taylor,et al.  Evolutionarily Stable Strategies and Game Dynamics , 1978 .

[4]  J. Eisert,et al.  Quantum Games and Quantum Strategies , 1998, quant-ph/9806088.

[5]  Ross Cressman,et al.  The Stability Concept of Evolutionary Game Theory , 1992 .

[6]  J. Neumann,et al.  Theory of games and economic behavior , 1945, 100 Years of Math Milestones.

[7]  S. C. Benjamin Comment on “A quantum approach to static games of complete information” , 2000 .

[8]  E. Damme Stability and perfection of Nash equilibria , 1987 .

[9]  Thomas Bäck,et al.  Evolutionary computation: comments on the history and current state , 1997, IEEE Trans. Evol. Comput..

[10]  P. Ciais Holocene climate: Restless carbon pools , 1999, Nature.

[11]  Azhar Iqbal,et al.  Entanglement and dynamic stability of Nash equilibria in a symmetric quantum game , 2001 .

[12]  Luca Marinatto,et al.  A quantum approach to static games of complete information , 2000 .

[13]  P. Hayden,et al.  Comment on "quantum games and quantum strategies". , 2000, Physical Review Letters.

[14]  I. Eshel,et al.  Continuous stability and evolutionary convergence. , 1997, Journal of theoretical biology.

[15]  I. Eshel On the changing concept of evolutionary population stability as a reflection of a changing point of view in the quantitative theory of evolution , 1996, Journal of mathematical biology.

[16]  Jörgen W. Weibull,et al.  Evolutionary Game Theory , 1996 .

[17]  Apoorva Patel Quantum algorithms and the genetic code , 2001 .

[18]  Thomas Bäck,et al.  A Superior Evolutionary Algorithm for 3-SAT , 1998, Evolutionary Programming.

[19]  Azhar Iqbal,et al.  Quantum mechanics gives stability to a Nash equilibrium , 2002 .

[20]  Lov K. Grover A fast quantum mechanical algorithm for database search , 1996, STOC '96.

[21]  Günther Palm,et al.  Evolutionary stable strategies and game dynamics for n-person games , 1984 .

[22]  Azhar Iqbal,et al.  Evolutionarily stable strategies in quantum games , 2000 .

[23]  Luca Marinatto,et al.  Reply to “Comment on: A quantum approach to static games of complete information” , 2000 .

[24]  L. Hurst,et al.  Early fixation of an optimal genetic code. , 2000, Molecular biology and evolution.

[25]  K Sigmund,et al.  Dynamical systems under constant organization I. Topological analysis of a family of non-linear differential equations--a model for catalytic hypercycles. , 1978, Bulletin of mathematical biology.

[26]  L F Landweber,et al.  Selection, history and chemistry: the three faces of the genetic code. , 1999, Trends in biochemical sciences.

[27]  J M Smith,et al.  Evolution and the theory of games , 1976 .

[28]  G. W. Greenwood,et al.  Finding solutions to NP problems: philosophical differences between quantum and evolutionary search algorithms , 2000, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546).

[29]  Laura F. Landweber,et al.  Rewiring the keyboard: evolvability of the genetic code , 2001, Nature Reviews Genetics.