An efficient and modular grad–div stabilization

Abstract This paper presents two modular grad–div algorithms for calculating solutions to the Navier–Stokes equations (NSE). These algorithms add to an NSE code a minimally intrusive module that implements grad–div stabilization. The algorithms do not suffer from either solver breakdown or debilitating slow down for large values of grad–div parameters. Stability and optimal-order convergence of the methods are proven. Numerical tests confirm the theory and illustrate the benefits of these algorithms over a fully coupled grad–div stabilization.

[1]  Volker John,et al.  Time‐dependent flow across a step: the slip with friction boundary condition , 2006 .

[2]  Maxim A. Olshanskii,et al.  An Augmented Lagrangian-Based Approach to the Oseen Problem , 2006, SIAM J. Sci. Comput..

[3]  Petr N. Vabishchevich,et al.  Splitting schemes for unsteady problems involving the grad-div operator , 2016, ArXiv.

[4]  Volker John,et al.  Reference values for drag and lift of a two‐dimensional time‐dependent flow around a cylinder , 2004 .

[5]  M. Olshanskii A low order Galerkin finite element method for the Navier–Stokes equations of steady incompressible flow: a stabilization issue and iterative methods , 2002 .

[6]  Maxim A. Olshanskii,et al.  Grad-div stablilization for Stokes equations , 2003, Math. Comput..

[7]  Michael McLaughlin,et al.  A conservative, second order, unconditionally stable artificial compression method , 2017 .

[8]  R. Rannacher,et al.  Benchmark Computations of Laminar Flow Around a Cylinder , 1996 .

[9]  Volker John,et al.  On the Divergence Constraint in Mixed Finite Element Methods for Incompressible Flows , 2015, SIAM Rev..

[10]  Leo G. Rebholz,et al.  Preconditioning sparse grad-div/augmented Lagrangian stabilized saddle point systems , 2013, Comput. Vis. Sci..

[11]  G. Rapin,et al.  Efficient augmented Lagrangian‐type preconditioning for the Oseen problem using Grad‐Div stabilization , 2013 .

[12]  Douglas N. Arnold,et al.  Multigrid in H (div) and H (curl) , 2000, Numerische Mathematik.

[13]  R. Lehoucq,et al.  A Primal-Based Penalty Preconditioner for Elliptic Saddle Point Systems , 2006, SIAM J. Numer. Anal..

[14]  Andreas Prohl,et al.  On Pressure Approximation via Projection Methods for Nonstationary Incompressible Navier-Stokes Equations , 2008, SIAM J. Numer. Anal..

[15]  W. Layton,et al.  On relaxation times in the Navier-Stokes-Voigt model , 2013 .

[16]  Gerard L. G. Sleijpen,et al.  Accurate conjugate gradient methods for families of shifted systems , 2004 .

[17]  R. Hiptmair,et al.  MULTIGRID METHOD FORH(DIV) IN THREE DIMENSIONS , 1997 .

[18]  Joachim Schöberl,et al.  Multigrid methods for a parameter dependent problem in primal variables , 1999, Numerische Mathematik.

[19]  J. Guermond,et al.  Theory and practice of finite elements , 2004 .

[20]  Frédéric Hecht,et al.  New development in freefem++ , 2012, J. Num. Math..

[21]  Lutz Tobiska,et al.  A Two-Level Method with Backtracking for the Navier--Stokes Equations , 1998 .

[22]  A. de Niet,et al.  Two preconditioners for saddle point problems in fluid flows , 2007 .

[23]  Leo G. Rebholz,et al.  Error analysis and iterative solvers for Navier–Stokes projection methods with standard and sparse grad-div stabilization , 2014 .

[24]  Jean-Luc Guermond,et al.  High-order time stepping for the Navier-Stokes equations with minimal computational complexity , 2016, J. Comput. Appl. Math..

[25]  R. Rannacher,et al.  Finite-element approximations of the nonstationary Navier-Stokes problem. Part IV: error estimates for second-order time discretization , 1990 .

[26]  M. Stynes,et al.  Robust Numerical Methods for Singularly Perturbed Differential Equations: Convection-Diffusion-Reaction and Flow Problems , 1996 .

[27]  M. Olshanskii,et al.  A connection between filter stabilization and eddy viscosity models , 2013, 1302.4487.

[28]  Leo G. Rebholz,et al.  On the convergence rate of grad-div stabilized Taylor–Hood to Scott–Vogelius solutions for incompressible flow problems , 2011 .

[29]  Valeria Simoncini,et al.  Recent computational developments in Krylov subspace methods for linear systems , 2007, Numer. Linear Algebra Appl..

[30]  Volker John,et al.  On the parameter choice in grad-div stabilization for the Stokes equations , 2014, Adv. Comput. Math..

[31]  Volker John,et al.  Finite Element Methods for Incompressible Flow Problems , 2016 .

[32]  S. Börm,et al.  ℋ︁‐LU factorization in preconditioners for augmented Lagrangian and grad‐div stabilized saddle point systems , 2012 .

[33]  P. E. Bernatz,et al.  How conservative? , 1971, The Annals of thoracic surgery.

[34]  Leo G. Rebholz,et al.  On a reduced sparsity stabilization of grad–div type for incompressible flow problems , 2013 .

[35]  P. Raviart,et al.  Finite Element Approximation of the Navier-Stokes Equations , 1979 .

[36]  R. Glowinski,et al.  Augmented Lagrangian and Operator-Splitting Methods in Nonlinear Mechanics , 1987 .

[37]  W. Layton,et al.  On the determination of the grad-div criterion , 2017, Journal of Mathematical Analysis and Applications.

[38]  Maxim A. Olshanskii,et al.  Grad–div stabilization and subgrid pressure models for the incompressible Navier–Stokes equations , 2009 .

[39]  Nikolaos A. Malamataris,et al.  Computer-aided analysis of flow past a surface-mounted obstacle , 1997 .