Parameter identifiability of nonlinear systems: the role of initial conditions
暂无分享,去创建一个
[1] Petre Stoica,et al. Decentralized Control , 2018, The Control Systems Handbook.
[2] M. A. Kaashoek,et al. Realization and modelling in system theory , 1990 .
[3] A. Krener,et al. Nonlinear controllability and observability , 1977 .
[4] Lennart Ljung,et al. On global identifiability for arbitrary model parametrizations , 1994, Autom..
[5] S. T. Glad,et al. Differential Algebraic Modelling of Nonlinear Systems , 1990 .
[6] K. Forsman. Constructive Commutative Algebra in Nonlinear Control Theory , 1991 .
[7] F. Ollivier. Le probleme de l'identifiabilite structurelle globale : approche theorique, methodes effectives et bornes de complexite , 1990 .
[8] Claudio Cobelli,et al. Structural Identifiability of Nonlinear Systems: Algorithms Based on Differential Ideals , 1994 .
[9] E. Walter,et al. Global approaches to identifiability testing for linear and nonlinear state space models , 1982 .
[10] Eric Walter,et al. Identifiability of State Space Models: with applications to transformation systems , 1982 .
[11] N. Chater,et al. Similarity as transformation , 2003, Cognition.
[12] L. D'Angio,et al. A new differential algebra algorithm to test identifiability of nonlinear systems with given initial conditions , 2001, Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228).
[13] C. Cobelli,et al. Global identifiability of linear compartmental models-a computer algebra algorithm , 1998, IEEE Transactions on Biomedical Engineering.
[14] Giuseppa Carra'Ferro,et al. Groebner Bases and Differential Algebra , 1987 .
[15] C. Lobry. Contr^olabilite des systemes non lineaires , 1970 .
[16] A. Isidori. Nonlinear Control Systems , 1985 .
[17] Eric Walter,et al. Identifiability of State Space Models , 1982 .
[18] H. Rabitz,et al. Similarity transformation approach to identifiability analysis of nonlinear compartmental models. , 1989, Mathematical biosciences.
[19] K R Godfrey,et al. Structural identifiability of the parameters of a nonlinear batch reactor model. , 1992, Mathematical biosciences.
[20] T. Glad,et al. An Algebraic Approach to Linear and Nonlinear Control , 1993 .
[21] Bud Mishra,et al. Algorithmic Algebra , 1993, Texts and Monographs in Computer Science.
[22] Eduardo D. Sontag,et al. Mathematical Control Theory: Deterministic Finite Dimensional Systems , 1990 .
[23] Alberto Isidori,et al. Nonlinear control systems: an introduction (2nd ed.) , 1989 .
[24] Giuseppa Carrà Ferro. Groebner Bases and Differential Algebra , 1987, AAECC.
[25] C. Cobelli,et al. Global Identifiability of Nonlinear Model Parameters , 1997 .
[26] Claudio Cobelli,et al. Global identifiability of nonlinear models of biological systems , 2001, IEEE Transactions on Biomedical Engineering.
[27] J. Jacquez,et al. Numerical parameter identifiability and estimability: Integrating identifiability, estimability, and optimal sampling design , 1985 .
[28] Sette Diop,et al. Differential-Algebraic Decision Methods and some Applications to System Theory , 1992, Theor. Comput. Sci..
[29] Eduardo D. Sontag,et al. Mathematical control theory: deterministic finite dimensional systems (2nd ed.) , 1998 .