Developmental sources of conservation and variation in the evolution of the primate eye

Conserved developmental programs, such as the order of neurogenesis in the mammalian eye, suggest the presence of useful features for evolutionary stability and variability. The owl monkey, Aotus azarae, has developed a fully nocturnal retina in recent evolution. Description and quantification of cell cycle kinetics show that embryonic cytogenesis is extended in Aotus compared with the diurnal New World monkey Cebus apella. Combined with the conserved mammalian pattern of retinal cell specification, this single change in retinal progenitor cell proliferation can produce the multiple alterations of the nocturnal retina, including coordinated reduction in cone and ganglion cell numbers, increase in rod and rod bipolar numbers, and potentially loss of the fovea.

[1]  Richard B. Darlington,et al.  Web-based method for translating neurodevelopment from laboratory species to humans , 2007, Neuroinformatics.

[2]  K. Sanderson,et al.  Development of the mammalian retina , 1993 .

[3]  H. Kolb,et al.  Immunostaining with antibodies against protein kinase C isoforms in the fovea of the monkey retina , 1997, Microscopy research and technique.

[4]  Callum F. Ross,et al.  Into the Light: The Origin of Anthropoidea , 2000 .

[5]  C. Ross,et al.  Evolution of activity patterns and chromatic vision in primates: morphometrics, genetics and cladistics. , 2001, Journal of human evolution.

[6]  James M. Pflug,et al.  Molecular Phylogenetics and Evolution , 2001 .

[7]  R. Passingham,et al.  Rates of brain development in mammals including man. , 1985, Brain, behavior and evolution.

[8]  Jonathan Gray,et al.  Rb regulates proliferation and rod photoreceptor development in the mouse retina , 2004, Nature Genetics.

[9]  C. Cepko,et al.  Extrinsic and intrinsic factors control the genesis of amacrine and cone cells in the rat retina. , 1999, Development.

[10]  U. Dräger,et al.  A retinoic acid synthesizing enzyme in ventral retina and telencephalon of the embryonic mouse , 2000, Mechanisms of Development.

[11]  C. Cepko,et al.  Quantitative analysis of proliferation and cell cycle length during development of the rat retina , 1996, Developmental dynamics : an official publication of the American Association of Anatomists.

[12]  S. Donovan,et al.  Compensation by tumor suppressor genes during retinal development in mice and humans , 2006, BMC Biology.

[13]  S. Donovan,et al.  Preparation and square wave electroporation of retinal explant cultures , 2006, Nature Protocols.

[14]  B. Finlay,et al.  Linked regularities in the development and evolution of mammalian brains. , 1995, Science.

[15]  G. H. Jacobs Photopigments and seeing--lessons from natural experiments: the Proctor lecture. , 1998, Investigative ophthalmology & visual science.

[16]  R. Dawkins The Blind Watchmaker , 1986 .

[17]  C. Cepko,et al.  Lineage-independent determination of cell type in the embryonic mouse retina , 1990, Neuron.

[18]  Luiz Carlos L Silveira,et al.  Number and topography of cones, rods and optic nerve axons in New and Old World primates , 2008, Visual Neuroscience.

[19]  I. Bayazitov,et al.  Differentiated Horizontal Interneurons Clonally Expand to Form Metastatic Retinoblastoma in Mice , 2007, Cell.

[20]  Jonathan Winawer,et al.  Homeostasis of Eye Growth and the Question of Myopia , 2012, Neuron.

[21]  B. Finlay,et al.  Comparative Aspects of Visual System Development , 2006 .

[22]  LuizCarlosdeLima Silveira Comparative Study of the Primate Retina , 2003 .

[23]  S. Gould,et al.  Ontogeny and Phylogeny , 1978 .

[24]  G. E. G. Westermann,et al.  Ontogeny and Phytogeny , 1978 .

[25]  M. Wiener,et al.  Animal eyes. , 1957, The American orthoptic journal.

[26]  F. J. Livesey,et al.  Vertebrate neural cell-fate determination: Lessons from the retina , 2001, Nature Reviews Neuroscience.

[27]  P. Callaerts,et al.  PAX-6 in development and evolution. , 1997, Annual review of neuroscience.

[28]  S. Worthington,et al.  Primate evolution and adaptation , 2003 .

[29]  C. Cepko,et al.  Regulating proliferation during retinal development , 2001, Nature Reviews Neuroscience.

[30]  B. Finlay,et al.  Translating developmental time across mammalian species , 2001, Neuroscience.

[31]  C. Cepko,et al.  A unique pattern of photoreceptor degeneration in cyclin D1 mutant mice. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[32]  F. Zindy,et al.  N-myc coordinates retinal growth with eye size during mouse development. , 2008, Genes & development.

[33]  J. Gerhart,et al.  Cells, Embryos and Evolution , 1997 .

[34]  Olivier Pourquié,et al.  Control of segment number in vertebrate embryos , 2008, Nature.

[35]  T. Bown Anthropoid Origins , 1994, Advances in Primatology.

[36]  B. Finlay The developing and evolving retina: Using time to organize form , 2008, Brain Research.

[37]  F. J. Livesey,et al.  Prox1 function controls progenitor cell proliferation and horizontal cell genesis in the mammalian retina , 2003, Nature Genetics.

[38]  G. Sacher,et al.  Relation of Gestation Time to Brain Weight for Placental Mammals: Implications for the Theory of Vertebrate Growth , 1974, The American Naturalist.

[39]  Michael A. Dyer,et al.  Inactivation of the p53 pathway in retinoblastoma , 2006, Nature.

[40]  Michael R. Rose,et al.  Variation in the reversibility of evolution , 2000, Nature.

[41]  M. Fero,et al.  p27(Kip1) regulates cell cycle withdrawal of late multipotent progenitor cells in the mammalian retina. , 2000, Developmental biology.

[42]  C. Cepko,et al.  p27Kip1 and p57Kip2 Regulate Proliferation in Distinct Retinal Progenitor Cell Populations , 2001, The Journal of Neuroscience.

[43]  S. Elledge,et al.  Cyclin D1 provides a link between development and oncogenesis in the retina and breast , 1995, Cell.

[44]  Constance L. Cepko,et al.  A common progenitor for neurons and glia persists in rat retina late in development , 1987, Nature.

[45]  R. Fernald Evolution of eyes , 2000, Current Opinion in Neurobiology.